Answer:
For each scenario as following:
A. 3 Potential deaths by chlorine exposure
B. 1 Potential deaths by chlorine exposure
C. 3 Potential deaths by chlorine exposure
Explanation:
According to Freitag, 1941 Chlorine exposure can be lethal at the concentration of 34-51 ppm in a time of 1h-1.5h. The answers are based on his reference.
Answer:
The unbalanced chemical equation: H₂O₂ → H₂O + O₂.
The balanced chemical equation: H₂O₂ → H₂O + 1/2O₂.
Explanation:
- Hydrogen peroxide is decomposed into oxygen and water, which is a slow reaction.
- It is can be catalyzed by using yeast.
The unbalanced chemical equation: H₂O₂ → H₂O + O₂.
The balanced chemical equation: H₂O₂ → H₂O + 1/2O₂.
1.0 mol of H₂O₂ is decomposed to 1.0 mol of H₂O and 0.5 mol of O₂.
Answer:
a) [A⁻]/[HA] = 0.227
b) [A⁻]/[HA] = 0.991
c) [A⁻]/[HA] = 2.667
Explanation:
In the Henderson-Hasselbalch equation, HA stands from an acid an A⁻ stands from its conjugate base, as follows:
pH = pka + Log [A⁻]/[HA]
pH = 4.874 + Log[CH₃CH₂CO₂⁻]/[CH₃CH₂CO₂H]
4.23 = 4.874 + Log [A⁻]/[HA]
-0.644 = Log [A⁻]/[HA]
= [A⁻]/[HA]
0.227 = [A⁻]/[HA]
4.87 = 4.874 + Log [A⁻]/[HA]
-0.004 = Log [A⁻]/[HA]
= [A⁻]/[HA]
0.991 = [A⁻]/[HA]
5.30 = 4.874 + Log [A⁻]/[HA]
0.426 = Log [A⁻]/[HA]
= [A⁻]/[HA]
2.667 = [A⁻]/[HA]
C. Enzyme because they catalyze biochemical reactions
To find the answer you need to use the formula that will help you to find the density. Density = mass/volume
d = 43.2g/96.5mL = 0.45g/mL