First is to get the volume of the cylinder.
Volume = pi * r^2 * H
Volume = 3.1416 * (5/2)^2 * 30
Volume = 589.05 in^3
30% is already filled.
Filled Space = 589.05 * 0.30
Filled Space = 176.715 in^3
Empty Space = 412.335 in^3
Next, get the volume of the sphere.
V = (4/3)*pi*r^3
V = (4/3)*pi*(0.6/2)^3
V = 0.1130976 in^3
Number of foams = Filled Space / V
Number of foams = 176.715 / <span>0.1130976
Number of foams = 1562 Foams</span>
Suppose the original price to be x.
62%x=296.4
Divide both sides by 62% to get x=478, which is the original price.
Answer:
non linear
Step-by-step explanation:
Answer:
use pemdas(order of the operations)and you'll get the answer 27!!
Step-by-step explanation:
Answer:
A) 34.13%
B) 15.87%
C) 95.44%
D) 97.72%
E) 49.87%
F) 0.13%
Step-by-step explanation:
To find the percent of scores that are between 90 and 100, we need to standardize 90 and 100 using the following equation:

Where m is the mean and s is the standard deviation. Then, 90 and 100 are equal to:

So, the percent of scores that are between 90 and 100 can be calculated using the normal standard table as:
P( 90 < x < 100) = P(-1 < z < 0) = P(z < 0) - P(z < -1)
= 0.5 - 0.1587 = 0.3413
It means that the PERCENT of scores that are between 90 and 100 is 34.13%
At the same way, we can calculated the percentages of B, C, D, E and F as:
B) Over 110

C) Between 80 and 120

D) less than 80

E) Between 70 and 100

F) More than 130
