Answer:
The function
is continuous at x = 36.
Step-by-step explanation:
We need to follow the following steps:
The function is:
![\\ f(x) = \frac{x*\sqrt{x}}{(x-6)^{2}}](https://tex.z-dn.net/?f=%20%5C%5C%20f%28x%29%20%3D%20%5Cfrac%7Bx%2A%5Csqrt%7Bx%7D%7D%7B%28x-6%29%5E%7B2%7D%7D)
The function is continuous at point x=36 if:
- The function
exists at x=36. - The limit on both sides of 36 exists.
- The value of the function at x=36 is the same as the value of the limit of the function at x = 36.
Therefore:
The value of the function at x = 36 is:
![\\ f(36) = \frac{36*\sqrt{36}}{(36-6)^{2}}](https://tex.z-dn.net/?f=%20%5C%5C%20f%2836%29%20%3D%20%5Cfrac%7B36%2A%5Csqrt%7B36%7D%7D%7B%2836-6%29%5E%7B2%7D%7D)
![\\ f(36) = \frac{36*6}{900} = \frac{6}{25}](https://tex.z-dn.net/?f=%20%5C%5C%20f%2836%29%20%3D%20%5Cfrac%7B36%2A6%7D%7B900%7D%20%3D%20%5Cfrac%7B6%7D%7B25%7D)
The limit of the
is the same at both sides of x=36, that is, the evaluation of the limit for values coming below x = 36, or 33, 34, 35.5, 35.9, 35.99999 is the same that the limit for values coming above x = 36, or 38, 37, 36.5, 36.1, 36.01, 36.001, 36.0001, etc.
For this case:
![\\ lim_{x \to 36} f(x) = \frac{x*\sqrt{x}}{(x-6)^{2}}](https://tex.z-dn.net/?f=%20%5C%5C%20lim_%7Bx%20%5Cto%2036%7D%20f%28x%29%20%3D%20%5Cfrac%7Bx%2A%5Csqrt%7Bx%7D%7D%7B%28x-6%29%5E%7B2%7D%7D)
![\\ \lim_{x \to 36} f(x) = \frac{6}{25}](https://tex.z-dn.net/?f=%20%5C%5C%20%5Clim_%7Bx%20%5Cto%2036%7D%20f%28x%29%20%3D%20%5Cfrac%7B6%7D%7B25%7D%20)
Since
![\\ f(36) = \frac{6}{25}](https://tex.z-dn.net/?f=%20%5C%5C%20f%2836%29%20%3D%20%5Cfrac%7B6%7D%7B25%7D)
And
![\\ \lim_{x \to 36} f(x) = \frac{6}{25}](https://tex.z-dn.net/?f=%20%5C%5C%20%5Clim_%7Bx%20%5Cto%2036%7D%20f%28x%29%20%3D%20%5Cfrac%7B6%7D%7B25%7D%20)
Then, the function
is continuous at x = 36.