Answer:
26
Step-by-step explanation:
Use the Pythagorean Theorem: 
<h2>✒️Area Between Curves</h2>
![\small\begin{array}{ |c|c} \hline \bold{Area\ Between\ Curves} \\ \\ \textsf{Solving for the intersection of }\rm y = x^2 + 2\textsf{ and }\\ \rm y = 4, \\ \\ \qquad \begin{aligned} \rm y_1 &=\rm y_2 \\ \rm x^2 + 2 &=\rm 4 \\ \rm x^2 &= \rm 2 \\ \rm x &=\rm \pm \sqrt{2} \end{aligned} \\ \\ \textsf{We only need the first quadrant area bounded} \\ \textsf{by the given curves so the integral for the area} \\ \textsf{would then be} \\ \\ \boldsymbol{\displaystyle \rm A = \int_{\ a}^{\ b} {\left( \begin{array}{c}\text{upper} \\ \text{function}\end{array} \right) - \left( \begin{array}{c} \text{lower} \\ \text{function} \end{array} \right)\ dx}} \\ \\ \displaystyle \rm A = \int_{0}^{\sqrt{2}} \Big[4 - (x^2 + 2)\Big]\ dx \\ \\ \displaystyle \rm A = \int_{0}^{\sqrt{2}} (2 - x^2)\ dx \\ \\ \rm A = \left[2x - \dfrac{x^3}{3}\right]_{0}^{\sqrt{2}} \\ \\ \rm A = 2\sqrt{2} - \dfrac{\big(\sqrt{2}\big)^3}{3} \\ \\ \rm A = 2\sqrt{2} - \dfrac{2\sqrt{2}}{3} \\ \\\red{\boxed{\begin{array}{c} \rm A = \dfrac{4\sqrt{2}}{3}\textsf{ sq. units} \\ \textsf{or} \\ \rm A \approx 1.8856\textsf{ sq. units} \end{array}}} \\\\\hline\end{array}](https://tex.z-dn.net/?f=%5Csmall%5Cbegin%7Barray%7D%7B%20%7Cc%7Cc%7D%20%5Chline%20%5Cbold%7BArea%5C%20Between%5C%20Curves%7D%20%5C%5C%20%5C%5C%20%5Ctextsf%7BSolving%20for%20the%20intersection%20of%20%7D%5Crm%20y%20%3D%20x%5E2%20%2B%202%5Ctextsf%7B%20and%20%7D%5C%5C%20%5Crm%20y%20%3D%204%2C%20%5C%5C%20%5C%5C%20%5Cqquad%20%5Cbegin%7Baligned%7D%20%5Crm%20y_1%20%26%3D%5Crm%20y_2%20%5C%5C%20%5Crm%20x%5E2%20%2B%202%20%26%3D%5Crm%204%20%5C%5C%20%5Crm%20x%5E2%20%26%3D%20%5Crm%202%20%5C%5C%20%5Crm%20x%20%26%3D%5Crm%20%5Cpm%20%5Csqrt%7B2%7D%20%5Cend%7Baligned%7D%20%5C%5C%20%5C%5C%20%5Ctextsf%7BWe%20only%20need%20the%20first%20quadrant%20area%20bounded%7D%20%5C%5C%20%5Ctextsf%7Bby%20the%20given%20curves%20so%20the%20integral%20for%20the%20area%7D%20%5C%5C%20%5Ctextsf%7Bwould%20then%20be%7D%20%5C%5C%20%5C%5C%20%5Cboldsymbol%7B%5Cdisplaystyle%20%5Crm%20A%20%3D%20%5Cint_%7B%5C%20a%7D%5E%7B%5C%20b%7D%20%7B%5Cleft%28%20%5Cbegin%7Barray%7D%7Bc%7D%5Ctext%7Bupper%7D%20%5C%5C%20%5Ctext%7Bfunction%7D%5Cend%7Barray%7D%20%5Cright%29%20-%20%5Cleft%28%20%5Cbegin%7Barray%7D%7Bc%7D%20%5Ctext%7Blower%7D%20%5C%5C%20%5Ctext%7Bfunction%7D%20%5Cend%7Barray%7D%20%5Cright%29%5C%20dx%7D%7D%20%5C%5C%20%5C%5C%20%5Cdisplaystyle%20%5Crm%20A%20%3D%20%5Cint_%7B0%7D%5E%7B%5Csqrt%7B2%7D%7D%20%5CBig%5B4%20-%20%28x%5E2%20%2B%202%29%5CBig%5D%5C%20dx%20%5C%5C%20%5C%5C%20%5Cdisplaystyle%20%5Crm%20A%20%3D%20%5Cint_%7B0%7D%5E%7B%5Csqrt%7B2%7D%7D%20%282%20-%20x%5E2%29%5C%20dx%20%5C%5C%20%5C%5C%20%5Crm%20A%20%3D%20%5Cleft%5B2x%20-%20%5Cdfrac%7Bx%5E3%7D%7B3%7D%5Cright%5D_%7B0%7D%5E%7B%5Csqrt%7B2%7D%7D%20%5C%5C%20%5C%5C%20%5Crm%20A%20%3D%202%5Csqrt%7B2%7D%20-%20%5Cdfrac%7B%5Cbig%28%5Csqrt%7B2%7D%5Cbig%29%5E3%7D%7B3%7D%20%5C%5C%20%5C%5C%20%5Crm%20A%20%3D%202%5Csqrt%7B2%7D%20-%20%5Cdfrac%7B2%5Csqrt%7B2%7D%7D%7B3%7D%20%5C%5C%20%5C%5C%5Cred%7B%5Cboxed%7B%5Cbegin%7Barray%7D%7Bc%7D%20%5Crm%20A%20%3D%20%5Cdfrac%7B4%5Csqrt%7B2%7D%7D%7B3%7D%5Ctextsf%7B%20sq.%20units%7D%20%5C%5C%20%5Ctextsf%7Bor%7D%20%5C%5C%20%5Crm%20A%20%5Capprox%201.8856%5Ctextsf%7B%20sq.%20units%7D%20%5Cend%7Barray%7D%7D%7D%20%5C%5C%5C%5C%5Chline%5Cend%7Barray%7D)
#CarryOnLearning
#BrainlyForTrees

Answer:
3. 3 : 5; 3: 5
Step-by-step explanation:
First, let's find the leght of the sides of each octagon.

The area of an octagon is defined by

Replacing the area

Therefore, the side of the first octagon is 1.6 inches long.
Its perimeter is: 


Therefore, the side of the second octagon is 3.8 inches long.
Its perimeter is
.
Now, let's divide to find each ratio:
(the ratio between sides).
(the ratio between perimeters).
Therefore, the closest ratio is 3. 3 : 5; 3: 5