Answer:
The diameter of the model is 14.4 inches.
Step-by-step explanation:
The Diameter of the moon = 2,160 miles
The scale on the model represents 1 in = 150 miles
Let the model represents k inches in 2,160 miles.
So, by the Ratio of Proportionality:

⇒
or, k = 14.4 inches
⇒On the scale 2160 miles is represented as 14.4 inches
Hence the diameter of the model is 14.4 inches.
<h3>
<u>Answer</u><u>:</u><u>-</u></h3>
192 cm²
<h3>
<u>Step</u><u> </u><u>by</u><u> step</u><u> explanation</u><u> </u><u>:</u><u>-</u></h3>
Let us take the height be x , then its side = x + 4. Now half of base will be 12 cm .
<u>According</u><u> to Pythagoras Theorem :- </u>
=> base² + perpendicular ² = hypontenuse ²
=> 12² + x² = (x+4)²
=> 144 + x² = x² + 16 + 8x
=> 8x = 144-16
=> 8x = 128
=> x = 128/8
=> x = 16 cm .
Hence the height of ∆ is 16 cm .So the area will be half the product of base and altitude.
= 1/2 * 16 cm * 24cm .
= 192 cm²
<h3>
<u>★</u><u> </u><u>Hence</u><u> </u><u>the</u><u> </u><u>area</u><u> </u><u>of</u><u> </u><u>the </u><u>tria</u><u>ngle</u><u> is</u><u> </u><u>1</u><u>9</u><u>2</u><u> </u><u>cm²</u><u> </u><u>.</u></h3>
A=h•b/2
h=2x+1
b=2x
A=(2x+1) •2x/2
Divide numerator and denominator by 2
A=x(2x+1)