Answer: type it in quizlet
Step-by-step explanation:
<span>To solve these GCF and LCM problems, factor the numbers you're working with into primes:
3780 = 2*2*3*3*3*5*7
180 = 2*2*3*3*5
</span><span>We know that the LCM of the two numbers, call them A and B, = 3780 and that A = 180. The greatest common factor of 180 and B = 18 so B has factors 2*3*3 in common with 180 but no other factors in common with 180. So, B has no more 2's and no 5's
</span><span>Now, LCM(180,B) = 3780. So, A or B must have each of the factors of 3780. B needs another factor of 3 and a factor of 7 since LCM(A,B) needs for either A or B to have a factor of 2*2, which A has, and a factor of 3*3*3, which B will have with another factor of 3, and a factor of 7, which B will have.
So, B = 2*3*3*3*7 = 378.</span>
There are 12 inches in a foot, so 9ft = 108in. Also, 80% = 0.8. Therefore the formula is:
h(n) = 108 * 0.8^n.
To find the bounce height after 10 bounces, substitute n=10 into the equation:
h(n) = 108 * 0.8^10 = 11.60in (2.d.p.).
Finally to find how many bounces happen before the height is less than one inch, substitute h(n) = 1, then rearrage with logarithms to solve for the power, x:
108 * 0.8^x = 1;
0.8^x = 1/108;
Ln(0.8^x) = ln(1/108);
xln(0.8) = ln(1\108);
x = ln(1/108) / ln(0.8) = -4.682 / -0.223 = 21 bounces