Answer:
the answer is A, both bacteria and viruses contain Nucleic Acids
The organ in the human body that can best be compared to the mitochondria in the cell is the digestive system.
<h3>What is mitochondria?</h3>
The mitochondria is the organelle found in the living cell that helps in the generation of the cell energy. This, it is also called the powerhouse of the cell.
The mitochondria has the ability to turn the energy gotten from food into the energy the body can use.
This can be likened to the digestive system because the digestive system has the ability to breakdown food particles into the form the body can use for energy.
Learn more about digestive system here:
brainly.com/question/956634
#SPJ1
This is a parasitic relationship.
Answer:
In 1928, Fred Griffith performed an experiment revealing that genetic material can be passed between two different stains of the bacteria.
Explanation:
In 1928, Frederick Griffith, a British bacteriologist conducted some experiments to develop a pneumonia vaccine. He used mice and two strains of Streptococcus pneumoniae bacteria, known as R and S in his experiments.
The live R strain bacteria had a rough appearance and were nonvirulent. When he injected R bacteria into mice, they did not cause pneumonia. The live S strain bacteria had a smooth appearance due to their polysaccharide coating and were virulent. When injected into mice, the mice died as a result of pneumonia. The polysaccharide coating protected the S bacteria from the immune system of the mice.
Griffith then injected mice with heat-killed S bacteria (the heat killed the bacterial cells) and they did not cause pneumonia in mice. But when he injected a combination of non-lethal R bacteria and non-lethal heat-killed S bacteria into mice, the mice died from pneumonia. When he examined the blood sample from the dead mice, he found that the blood sample contained live S bacteria. This finding leads him to the conclusion that the nonvirulent R-strain bacteria had been "transformed" into virulent and lethal S-strain bacteria by taking up a "transforming principle" from the heat-killed S bacteria.
This experiment was then used for additional experiments conducted by Avery, McCarty, McLeod and then by Hershey and Chase. They found the evidence that the transforming principle from Griffith's experiment was actually the hereditary material, DNA. The DNA of the S strain bacteria had survived the heating process. This DNA that contains the genes for the production of the protective polysaccharide coating was taken up by the R strain bacteria. The transformed R strain bacteria were now protected from their host's immune system and this process of transferring genetic information between different bacterial strains is known as transformation.