1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Black_prince [1.1K]
4 years ago
10

I MARK BRAINLEIST! WHEN CONVERTING STANDARD FORM TO SCIENTIFIC FORM WITH A POSITIVE EXPONENT

Mathematics
1 answer:
Grace [21]4 years ago
3 0

Answer:

You move the 0 to the right

Step-by-step explanation:

You might be interested in
Find the least common multiple of 18, 24 *
emmainna [20.7K]

Answer:

72

Step-by-step explanation:

Find the prime factorization of 18

18 = 2 × 3 × 3

Find the prime factorization of 24

24 = 2 × 2 × 2 × 3

Multiply each factor the greater number of times it occurs in steps above to find the LCM:

LCM = 2 × 2 × 2 × 3 × 3

LCM = 72

i hope this helps :)

7 0
4 years ago
Read 2 more answers
What is the square root of 600?
BaLLatris [955]
24. 49489743 or 24 and 1/2 approximate
Happy to Help!
8 0
4 years ago
Read 2 more answers
Please Help, i am so confused
Brut [27]

Answer: d

Step-by-step explanation:

d

5 0
3 years ago
A store sells 8 colors of balloons with at least 28 of each color. How many different combinations of 28 balloons can be chosen?
Len [333]

Answer:

(a) Selection = 6724520

(b) At\ most\ 12 = 6553976

(c) At\ most\ 8 = 6066720

(d) At\ most\ 12\ red\ and\ at\ most\ 8\ blue =  5896638

Step-by-step explanation:

Given

Colors = 8

Balloons = 28 --- at least

Solving (a): 28 combinations

From the question, we understand that; a combination of 28 is to be selected. Because the order is not important, we make use of combination.

Also, because repetition is allowed; different balloons of the same kind can be selected over and over again.

So:

n => 28 + 8-1= 35

r = 28

Selection = ^{35}^C_{28

Selection = \frac{35!}{(35 - 28)!28!}

Selection = \frac{35!}{7!28!}

Selection = \frac{35*34*33*32*31*30*29*28!}{7!28!}

Selection = \frac{35*34*33*32*31*30*29}{7!}

Selection = \frac{35*34*33*32*31*30*29}{7*6*5*4*3*2*1}

Selection = \frac{33891580800}{5040}

Selection = 6724520

Solving (b): At most 12 red balloons

First, we calculate the ways of selecting at least 13 balloons

Out of the 28 balloons, there are 15 balloons remaining (i.e. 28 - 13)

So:

n => 15 + 8 -1 = 22

r = 15

Selection of at least 13 =

At\ least\ 13 = ^{22}C_{15}

At\ least\ 13 = \frac{22!}{(22-15)!15!}

At\ least\ 13 = \frac{22!}{7!15!}

At\ least\ 13 = 170544

Ways of selecting at most 12  =

At\ most\ 12 = Total - At\ least\ 13 --- Complement rule

At\ most\ 12 = 6724520- 170544

At\ most\ 12 = 6553976

Solving (c): At most 8 blue balloons

First, we calculate the ways of selecting at least 9 balloons

Out of the 28 balloons, there are 19 balloons remaining (i.e. 28 - 9)

So:

n => 19+ 8 -1 = 26

r = 19

Selection of at least 9 =

At\ least\ 9 = ^{26}C_{19}

At\ least\ 9 = \frac{26!}{(26-19)!19!}

At\ least\ 9 = \frac{26!}{7!19!}

At\ least\ 9 = 657800

Ways of selecting at most 8  =

At\ most\ 8 = Total - At\ least\ 9 --- Complement rule

At\ most\ 8 = 6724520- 657800

At\ most\ 8 = 6066720

Solving (d): 12 red and 8 blue balloons

First, we calculate the ways for selecting 13 red balloons and 9 blue balloons

Out of the 28 balloons, there are 6 balloons remaining (i.e. 28 - 13 - 9)

So:

n =6+6-1 = 11

r = 6

Selection =

^{11}C_6 = \frac{11!}{(11-6)!6!}

^{11}C_6 = \frac{11!}{5!6!}

^{11}C_6 = 462

Using inclusion/exclusion rule of two sets:

Selection = At\ most\ 12 + At\ most\ 8 - (12\ red\ and\ 8\ blue)

Only\ 12\ red\ and\ only\ 8\ blue\ = 170544+ 657800- 462

Only\ 12\ red\ and\ only\ 8\ blue\ = 827882

At\ most\ 12\ red\ and\ at\ most\ 8\ blue = Total - Only\ 12\ red\ and\ only\ 8\ blue

At\ most\ 12\ red\ and\ at\ most\ 8\ blue =  6724520 - 827882

At\ most\ 12\ red\ and\ at\ most\ 8\ blue =  5896638

3 0
3 years ago
Diana has been saving nickels and dimes. She opened up her piggy bank and determined that it contained 48 coins worth $4.50. Det
tino4ka555 [31]

Answer:

6 Nickels

42 Dimes

Step-by-step explanation:

There are 48 coins in total (nickels and dimes). Let the number of nickels be "n" and the number of dimes be "d". So we can write:

n + d = 48

or

n = 48 - d

In dollars, we know nickels are worth 0.05 and dimes are worth 0.10. In total there is $4.50, so we can write:

0.05n + 0.10d = 4.50

Now replacing first equation [n = 48 - d] into 2nd, we get and equation in "d" and solve for d first:

0.05n + 0.10d = 4.50\\0.05(48-d) + 0.10d = 4.50\\2.4-0.05d+0.10d=4.50\\0.05d=4.50-2.4\\0.05d=2.1\\d=\frac{2.1}{0.05}=42

So, there are 42 dimes.

We know from before, n = 48 - d, so

n = 48 - 42 = 6

There are 6 nickels

3 0
3 years ago
Other questions:
  • Melanie is reading a book that is 300 pages long. If she has read 210 pages of the book, what percent of the book has she read?
    7·1 answer
  • Kaitlin solved the equation for x using the following calculations.
    10·2 answers
  • Angles A and B are congruent m∠A= (5x+2)° and m∠B= (3x+ 8)° find the measurement of the angle B
    11·1 answer
  • Solve for x<br> 2/(7x) = 6/5<br><br> 5/21<br> -21/5<br> 21/5<br> I don't know<br> - 5/21
    13·1 answer
  • In parallelogram DEFG, DH = x + 2 HF = 2y, GH = 4x-3 and HE = 4y + 1. Find the values of x and y. The diagram is not drawn to sc
    11·1 answer
  • Find the median of the following data set. 1 1/4,5/8 ,3/5 ,1/2 ,1 1/2, 1 3/4
    6·1 answer
  • In exercises 8-10, write a system of linear equations that has the ordered pair as its solution. (-6, -2)
    13·1 answer
  • What is the slope of the line on the graph below?
    14·1 answer
  • Which option best shows X greater than or equal to -11
    15·2 answers
  • One of the measures of a triangle is 30º. If the sum of the other 2 angles is 150º and the differnce their measures is 18º what
    9·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!