Use Newton's second law and the free body diagram to determine the net force and acceleration of an object. In this unit, the forces acting on the object were always directed in one dimension.
The object may have been subjected to both horizontal and vertical forces but there was no single force directed both horizontally and vertically. Moreover, when free-body diagram analysis was performed, the net force was either horizontal or vertical, never both horizontal and vertical.
Times have changed and we are ready for situations involving two-dimensional forces. In this unit, we explore the effects of forces acting at an angle to the horizontal. This makes the force act in two dimensions, horizontal and vertical. In such situations, as always in situations involving one-dimensional network forces, Newton's second law applies.
Learn more about Newton's second law here:-brainly.com/question/25545050
#SPJ9
250/4= 62.5 mph
to find the mph of a car, you need to divide the number of miles traveled by the hours that it took to travel that many miles
Answer:
The population mean are the same
Explanation:
Answer:
The population means are the same.
Explanation:
The hypotheses for a difference in two population means are similar to those for a difference difference two population proportions.
At null point, Ha=0
Let the mean population of the young one be u1
Let the mean population of the old one be u2.
Then, the difference between their mean population distance is given as
Ha=u2-u1
Since, Ha is null point, Ha=0
0=u2-u1
u2=u1
This shows that the mean population distance of the old is equal to the mean population distance of the young.
Therefore their mean population distance is the same
Since it is null alternative then, the population mean are the same.
We must sample the population using
1. Samples must be random to remove or minimize bias.
2. Sample must be representative of the populations in question.
Answer:
This can be translated to:
"find the electrical charge of a body that has 1 million of particles".
First, it will depend on the charge of the particles.
If all the particles have 1 electron more than protons, we will have that the charge of each particle is q = -e = -1.6*10^-19 C
Then the total charge of the body will be:
Q = 1,000,000*-1.6*10^-19 C = -1.6*10^-13 C
If we have the inverse case, where we in each particle we have one more proton than the number of electrons, the total charge will be the opposite of the one of before (because the charge of a proton is equal in magnitude but different in sign than the charge of an electron)
Q = 1.6*10^-13 C
But commonly, we will have a spectrum with the particles, where some of them have a positive charge and some of them will have a negative charge, so we will have a probability of charge that is peaked at Q = 0, this means that, in average, the charge of the particles is canceled by the interaction between them.