Answer:
10000N
Explanation:
Given parameters:
Mass of the car = 1000kg
Acceleration = 3m/s²
g = 10m/s²
Unknown:
Weight of the car = ?
Solution:
To solve this problem we must understand that weight is the vertical gravitational force that acts on a body.
Weight = mass x acceleration due to gravity
So;
Weight = 1000 x 10 = 10000N
The work done by a constant force in a rectilinear motion is given by:
where F is the magnitude of the force, d is the distance and θ is the angle between the force and the displacement vector.
In this case we have two forces then we need to add the work done by each of them; for the first force we have a magnitude of 17 N, a displacement of 12 m and and angle of 0° (since both the displacement and the force point right); for the second force we have a magnitude of 36 N, a displacement of 12 m and an angle of 30°. Plugging these values we have that the total work is:
Therefore, the total work done is 578.123 J and the answer is option E
Our bodies emit heat, and nerve endings in our skin can detect it.
Our eyes can detect visible light, but our bodies don't emit that.
Answer:
A: used has four times the tensile strength of steel and the timber frame, incorporating
Explanation:
Option A is correct because it conveys the correct message intended by the statement and has no grammatical errors.
Option B is wrong because to say "has four times the tensile strength of steel has" is just grammatically and idiomatically wrong as has is used twice in the sentence.
Option C is wrong because the statement that has to do with the flexibility of the timber's frame is more like a separate fact and does not fall under the scope of trying to further explain a fact.
Option D is wrong because it has the same problem in Option C. The comma that is placed after "steel" breaks the sentence and hence does not provide a good understanding of why the building can withstand earthquakes.
Option E is grammatically wrong for using does in the sentence "has four times the tensile strength steel does"