Consider two x distributions corresponding to the same x distribution. The first x distribution is based on samples of size n =
100 and the second is based on samples of size n = 225. Which x distribution has the smaller standard error? The distribution with n = 100 will have a smaller standard error. The distribution with n = 225 will have a smaller standard error. Explain your answer. Since σx = σ2/√n, dividing by the square root of 100 will result in a small standard error regardless of the value of σ2. Since σx = σ/n, dividing by 100 will result in a small standard error regardless of the value of σ. Since σx = σ/n, dividing by 225 will result in a small standard error regardless of the value of σ. Since σx = σ/√n, dividing by the square root of 100 will result in a small standard error regardless of the value of σ. Since σx = σ/√n, dividing by the square root of 225 will result in a small standard error regardless of the value of σ. Since σx = σ2/√n, dividing by the square root of 225 will result in a small standard error regardless of the value of σ2.
The distribution with n = 225 will give a smaller standard error.
Since sigma x = sigma/√n, dividing by the square root of 225 will result in a small standard error regardless of the value of sigma.
Step-by-step explanation:
Standard error is given by standard deviation (sigma) divided by square root of sample size (√n).
The distribution with n = 225 would give a smaller standard error because the square root of 225 is 15. The inverse of 15 multiplied by sigma is approximately 0.07sigma which is smaller compared to the distribution n = 100. Square of 100 is 10, inverse of 10 multiplied by sigma is 0.1sigma.
The area of any quadrilateral can be determined by multiplying the length of its base by its height. Since we know the shape here is square, we know that all sides are of equal length. From this we can work backwards by taking the square root of the area to find the length of one side.