Answer:
x= -8 , y = 5
x= 25/4 , y = 1/4
Step-by-step explanation:
substitute first eqn into the second eqn:
(7 - 3y)^2 -y^2 = 39
49 - 42y + 9y^2 - y^2 = 39
8y^2 - 42y +10 =0
4y^2 - 21y + 5 = 0
(4y-1) (y-5) = 0
y= 1/4 , 5
when y=1/4
x = 7- 3/4
=25/4
when y= 5
x = 7- 15
= -8
Roland’s Boat Tours will make more money if they sell more economy seats, hence the maximum profit is attained if they only sell the minimum deluxe seat which is 6
6*35+ 24*40 = 210+960= $1170
<em />
Given details
To make a complete tour, at least 1 economy seats
and 6 deluxe seats
Maximum passengers per tour = 30
<em />
<em>"Boat Tours makes $40 profit for each </em><em>economy</em><em> seat sold and $35 profit for each deluxe seat sold"</em>
<em> </em>Therefore, to maximise profit, he needs to take more of economy seats
Hence
Let a deluxe seat be x and economy seat be y
Maximise
6 x+ 24y = 30
The maximum profit from one tour is = 6*35+ 24*40 = 210+960= $1170
Learn more
brainly.com/question/25828237
<em />
Answer:
In triangle ABC and triangle CDA
AB=CD(given)
BC=DA(given)
AC=AC(common)
Thus triangle ABC and triangle CDA are congruent by SSS rule
Answer:
Sqrt of 160
Step-by-step explanation:
The distance, try to think it as a triangle, so you will find out that the distance equals the sqrt of(8-(-4))^2 + (9-5)^2, so it will be sqrt of(144+16) which is sqrt of 160, so the answer will be sqrt of 160
Answer:
Third option.
Step-by-step explanation:
You need to cube both sides of the equation. Remember the Power of a power property:

![\sqrt[3]{162x^cy^5}=3x^2y(\sqrt[3]{6y^d})\\\\(\sqrt[3]{162x^cy^5})^3=(3x^2y(\sqrt[3]{6y^d}))^3\\\\162x^cy^5=27x^6y^36y^d](https://tex.z-dn.net/?f=%5Csqrt%5B3%5D%7B162x%5Ecy%5E5%7D%3D3x%5E2y%28%5Csqrt%5B3%5D%7B6y%5Ed%7D%29%5C%5C%5C%5C%28%5Csqrt%5B3%5D%7B162x%5Ecy%5E5%7D%29%5E3%3D%283x%5E2y%28%5Csqrt%5B3%5D%7B6y%5Ed%7D%29%29%5E3%5C%5C%5C%5C162x%5Ecy%5E5%3D27x%5E6y%5E36y%5Ed)
According to the Product of powers property:

Then. simplifying you get:

Now you need to compare the exponents. You can observe that the exponent of "x" on the right side is 6, then the exponent of "x" on the left side must be 6. Therefore:

You can notice that the exponent of "y" on the left side is 5, then the exponent of "x" on the left side must be 5 too. Therefore "d" is:
