Just substitute each number in for the variables: 9 for m and 3 for n.
2m+2n
= 2(9)+2(3)
= 18+6
= 24
I'm not sure that I am 100% right but I'll give it a shot.
50+75= 125*0.35=43.75
$43.75
Answer:
6
Step-by-step explanation:
cancel out 5 by multiplying its by 5, what you do to one side you do to the other. so you also multiply 12 by 5. and you should get 60
Answer:
I don't know how this is math but...
The Gulf of Tonkin Resolution authorized President Lyndon Johnson to “take all necessary measures to repel any armed attack against the forces of the United States and to prevent further aggression” by the communist government of North Vietnam. Hope I helped! ☺
<h2>✒️Area Between Curves</h2>
![\small\begin{array}{ |c|c} \hline \bold{Area\ Between\ Curves} \\ \\ \textsf{Solving for the intersection of }\rm y = x^2 + 2\textsf{ and }\\ \rm y = 4, \\ \\ \qquad \begin{aligned} \rm y_1 &=\rm y_2 \\ \rm x^2 + 2 &=\rm 4 \\ \rm x^2 &= \rm 2 \\ \rm x &=\rm \pm \sqrt{2} \end{aligned} \\ \\ \textsf{We only need the first quadrant area bounded} \\ \textsf{by the given curves so the integral for the area} \\ \textsf{would then be} \\ \\ \boldsymbol{\displaystyle \rm A = \int_{\ a}^{\ b} {\left( \begin{array}{c}\text{upper} \\ \text{function}\end{array} \right) - \left( \begin{array}{c} \text{lower} \\ \text{function} \end{array} \right)\ dx}} \\ \\ \displaystyle \rm A = \int_{0}^{\sqrt{2}} \Big[4 - (x^2 + 2)\Big]\ dx \\ \\ \displaystyle \rm A = \int_{0}^{\sqrt{2}} (2 - x^2)\ dx \\ \\ \rm A = \left[2x - \dfrac{x^3}{3}\right]_{0}^{\sqrt{2}} \\ \\ \rm A = 2\sqrt{2} - \dfrac{\big(\sqrt{2}\big)^3}{3} \\ \\ \rm A = 2\sqrt{2} - \dfrac{2\sqrt{2}}{3} \\ \\\red{\boxed{\begin{array}{c} \rm A = \dfrac{4\sqrt{2}}{3}\textsf{ sq. units} \\ \textsf{or} \\ \rm A \approx 1.8856\textsf{ sq. units} \end{array}}} \\\\\hline\end{array}](https://tex.z-dn.net/?f=%5Csmall%5Cbegin%7Barray%7D%7B%20%7Cc%7Cc%7D%20%5Chline%20%5Cbold%7BArea%5C%20Between%5C%20Curves%7D%20%5C%5C%20%5C%5C%20%5Ctextsf%7BSolving%20for%20the%20intersection%20of%20%7D%5Crm%20y%20%3D%20x%5E2%20%2B%202%5Ctextsf%7B%20and%20%7D%5C%5C%20%5Crm%20y%20%3D%204%2C%20%5C%5C%20%5C%5C%20%5Cqquad%20%5Cbegin%7Baligned%7D%20%5Crm%20y_1%20%26%3D%5Crm%20y_2%20%5C%5C%20%5Crm%20x%5E2%20%2B%202%20%26%3D%5Crm%204%20%5C%5C%20%5Crm%20x%5E2%20%26%3D%20%5Crm%202%20%5C%5C%20%5Crm%20x%20%26%3D%5Crm%20%5Cpm%20%5Csqrt%7B2%7D%20%5Cend%7Baligned%7D%20%5C%5C%20%5C%5C%20%5Ctextsf%7BWe%20only%20need%20the%20first%20quadrant%20area%20bounded%7D%20%5C%5C%20%5Ctextsf%7Bby%20the%20given%20curves%20so%20the%20integral%20for%20the%20area%7D%20%5C%5C%20%5Ctextsf%7Bwould%20then%20be%7D%20%5C%5C%20%5C%5C%20%5Cboldsymbol%7B%5Cdisplaystyle%20%5Crm%20A%20%3D%20%5Cint_%7B%5C%20a%7D%5E%7B%5C%20b%7D%20%7B%5Cleft%28%20%5Cbegin%7Barray%7D%7Bc%7D%5Ctext%7Bupper%7D%20%5C%5C%20%5Ctext%7Bfunction%7D%5Cend%7Barray%7D%20%5Cright%29%20-%20%5Cleft%28%20%5Cbegin%7Barray%7D%7Bc%7D%20%5Ctext%7Blower%7D%20%5C%5C%20%5Ctext%7Bfunction%7D%20%5Cend%7Barray%7D%20%5Cright%29%5C%20dx%7D%7D%20%5C%5C%20%5C%5C%20%5Cdisplaystyle%20%5Crm%20A%20%3D%20%5Cint_%7B0%7D%5E%7B%5Csqrt%7B2%7D%7D%20%5CBig%5B4%20-%20%28x%5E2%20%2B%202%29%5CBig%5D%5C%20dx%20%5C%5C%20%5C%5C%20%5Cdisplaystyle%20%5Crm%20A%20%3D%20%5Cint_%7B0%7D%5E%7B%5Csqrt%7B2%7D%7D%20%282%20-%20x%5E2%29%5C%20dx%20%5C%5C%20%5C%5C%20%5Crm%20A%20%3D%20%5Cleft%5B2x%20-%20%5Cdfrac%7Bx%5E3%7D%7B3%7D%5Cright%5D_%7B0%7D%5E%7B%5Csqrt%7B2%7D%7D%20%5C%5C%20%5C%5C%20%5Crm%20A%20%3D%202%5Csqrt%7B2%7D%20-%20%5Cdfrac%7B%5Cbig%28%5Csqrt%7B2%7D%5Cbig%29%5E3%7D%7B3%7D%20%5C%5C%20%5C%5C%20%5Crm%20A%20%3D%202%5Csqrt%7B2%7D%20-%20%5Cdfrac%7B2%5Csqrt%7B2%7D%7D%7B3%7D%20%5C%5C%20%5C%5C%5Cred%7B%5Cboxed%7B%5Cbegin%7Barray%7D%7Bc%7D%20%5Crm%20A%20%3D%20%5Cdfrac%7B4%5Csqrt%7B2%7D%7D%7B3%7D%5Ctextsf%7B%20sq.%20units%7D%20%5C%5C%20%5Ctextsf%7Bor%7D%20%5C%5C%20%5Crm%20A%20%5Capprox%201.8856%5Ctextsf%7B%20sq.%20units%7D%20%5Cend%7Barray%7D%7D%7D%20%5C%5C%5C%5C%5Chline%5Cend%7Barray%7D)
#CarryOnLearning
#BrainlyForTrees
