30 days
Step-by-step explanation:
720/24
30
hope it helps ,pls mark me as brainliest
Answer:
Step-by-step explanation:
bvfghhgf
Answer:
a.
<u>Increasing:</u>
x < 0
x > 2
<u>Decreasing:</u>
0 < x < 2
b.
-1 < x < 2
x > 2
c.
x < -1
Step-by-step explanation:
a.
Function is increasing when it is going up as we go rightward
Function is decreasing when it is going down as we go rightward
We can see that as we move up (from negative infinity) until x = 0, the function is increasing. Also, as we go right from x = 2 towards positive infinity, the function is going up (increasing).
So,
<u>Increasing:</u>
x < 0
x > 2
The function is going down, or decreasing, at the in-between points of increasing, that is from 0 to 2, so that would be:
<u>Decreasing:</u>
0 < x < 2
b.
When we want where the function is greater than 0, we basically want the intervals at which the function is ABOVE the x-axis [ f(x) > 0 ].
Looking at the graph, it is
from -1 to 2 (x axis)
and 2 to positive infinity
We can write:
-1 < x < 2
x > 2
c.
Now we want when the function is less than 0, that is basically saying when the function is BELOW the x-axis.
This will be the other intervals than the ones we mentioned above in part (b).
Looking at the graph, we see that the graph is below the x-axis when it is less than -1, so we can write:
x < -1
70 + 130 = 200
This would be Abe’s one hour of work and the part
80 + 80 + 40 = 200
This would be Gabe’s two hours of work and the part
Answer:
13.98 in²
Step-by-step explanation:
I don't understand it, either.
Point N is part of a "segment" that above and to the right of chord MO. It is the sum of the areas of 3/4 of the circle and a right triangle with 7-inch sides. The larger segment MO to the upper right of chord MO has an area of about 139.95 in², which <u>is not</u> an answer choice.
__
The remaining segment, to the lower left of chord MO does not seem to have anything to do with point N. However, its area is 13.98 in², which <u>is</u> an answer choice. Therefore, we think the question is about this segment, and we wonder why it is called MNO.
The area of a segment is given by the formula ...
A = (1/2)(θ -sin(θ))r² . . . . . . where θ is the central angle in radians.
Here, we have θ = π/2, r = 7 in, so we can compute the area of the smaller segment MO as ...
A = (1/2)(π/2 -sin(π/2))(7 in)² = 24.5(π/2 -1) in² ≈ 13.9845 in²
Rounded to hundredths, this is ...
≈ 13.98 in²