Answer:
There is not enough evidence to support the claim that union membership increased.
Step-by-step explanation:
We are given the following in the question:
Sample size, n = 400
p = 12.5% = 0.125
Alpha, α = 0.05
Number of women belonging to union , x = 52
First, we design the null and the alternate hypothesis
The null hypothesis sates that 12.5% of U.S. workers belong to union and the alternate hypothesis states that there is a increase in union membership.
This is a one-tailed(right) test.
Formula:
Putting the values, we get,
Now, we calculate the p-value from the table.
P-value = 0.3812
Since the p-value is greater than the significance level, we fail to reject the null hypothesis and accept the null hypothesis.
Conclusion:
Thus, there is not enough evidence to support the claim that union membership increased.
Answer:0.8 feet
Step-by-step explanation:got it right
Answer:

Step-by-step explanation:
a²+b²=c² so: 33²+15²=x²
1089+225=x²
1314=x²
take the square root of both sides
36.249=x or

=x
The answer to the question is 20.55
We can't write the product because there is no common input in the tables of g(x) and f(x).
<h3>Why you cannot find the product between the two functions?</h3>
If two functions f(x) and g(x) are known, then the product between the functions is straightforward.
g(x)*f(x)
Now, if we only have some coordinate pairs belonging to the function, we only can write the product if we have two coordinate pairs with the same input.
For example, if we know that (a, b) belongs to f(x) and (a, c) belongs to g(x), then we can get the product evaluated in a as:
(g*f)(a) = f(a)*g(a) = b*c
Particularly, in this case, we can see that there is no common input in the two tables, then we can't write the product of the two functions.
If you want to learn more about product between functions:
brainly.com/question/4854699
#SPJ1