I believe it's 8 because it's scale is 4 times bigger.
2×4=8
Answer:

Step-by-step explanation:
We are given the following in the question:

We have to prove:

Proof:

we can write:

Hence, the two triangle are congruent by SAS congruency rule.

The attached image shows the two triangle.
Answer:
a relationship or expression involving one or more variables
<h3>
Answer: C) increase from 45 degrees to 50 degrees</h3>
===============================================
Explanation:
Let's calculate the angle B based off the arcs CDF and GHJ
B = (far arc - near arc)/2
B = (arc CDF - arc GHJ)/2
B = (130 - 40)/2
B = 90/2
B = 45
----------
Now let's change GHJ to 30 degrees, while keeping the other arc the same.
B = (far arc - near arc)/2
B = (arc CDF - arc GHJ)/2
B = (130 - 30)/2
B = 100/2
B = 50
Angle B has increased from 45 degrees to 50 degrees.
Check the picture below, so the circle looks more or less like that one.
well, the center of it is simply the Midpoint of those two points, and its radius is simply half-the-distance between them.
![~~~~~~~~~~~~\textit{middle point of 2 points } \\\\ (\stackrel{x_1}{-5}~,~\stackrel{y_1}{9})\qquad (\stackrel{x_2}{3}~,~\stackrel{y_2}{5}) \qquad \left(\cfrac{ x_2 + x_1}{2}~~~ ,~~~ \cfrac{ y_2 + y_1}{2} \right) \\\\\\ \left(\cfrac{ 3 -5}{2}~~~ ,~~~ \cfrac{ 5 + 9}{2} \right)\implies \left( \cfrac{-2}{2}~~,~~\cfrac{14}{2} \right)\implies \stackrel{center}{(-1~~,~~7)} \\\\[-0.35em] ~\dotfill](https://tex.z-dn.net/?f=~~~~~~~~~~~~%5Ctextit%7Bmiddle%20point%20of%202%20points%20%7D%20%5C%5C%5C%5C%20%28%5Cstackrel%7Bx_1%7D%7B-5%7D~%2C~%5Cstackrel%7By_1%7D%7B9%7D%29%5Cqquad%20%28%5Cstackrel%7Bx_2%7D%7B3%7D~%2C~%5Cstackrel%7By_2%7D%7B5%7D%29%20%5Cqquad%20%5Cleft%28%5Ccfrac%7B%20x_2%20%2B%20x_1%7D%7B2%7D~~~%20%2C~~~%20%5Ccfrac%7B%20y_2%20%2B%20y_1%7D%7B2%7D%20%5Cright%29%20%5C%5C%5C%5C%5C%5C%20%5Cleft%28%5Ccfrac%7B%203%20-5%7D%7B2%7D~~~%20%2C~~~%20%5Ccfrac%7B%205%20%2B%209%7D%7B2%7D%20%5Cright%29%5Cimplies%20%5Cleft%28%20%5Ccfrac%7B-2%7D%7B2%7D~~%2C~~%5Ccfrac%7B14%7D%7B2%7D%20%5Cright%29%5Cimplies%20%5Cstackrel%7Bcenter%7D%7B%28-1~~%2C~~7%29%7D%20%5C%5C%5C%5C%5B-0.35em%5D%20~%5Cdotfill)
![~~~~~~~~~~~~\textit{distance between 2 points} \\\\ (\stackrel{x_1}{-5}~,~\stackrel{y_1}{9})\qquad (\stackrel{x_2}{3}~,~\stackrel{y_2}{5})\qquad \qquad d = \sqrt{( x_2- x_1)^2 + ( y_2- y_1)^2} \\\\\\ \stackrel{diameter}{d}=\sqrt{[3 - (-5)]^2 + [5 - 9]^2}\implies d=\sqrt{(3+5)^2+(-4)^2} \\\\\\ d=\sqrt{8^2+16}\implies d=\sqrt{80}\implies d=4\sqrt{5}~\hfill \stackrel{\textit{half the diameter}}{\cfrac{4\sqrt{5}}{2}\implies \underset{radius}{2\sqrt{5}}}](https://tex.z-dn.net/?f=~~~~~~~~~~~~%5Ctextit%7Bdistance%20between%202%20points%7D%20%5C%5C%5C%5C%20%28%5Cstackrel%7Bx_1%7D%7B-5%7D~%2C~%5Cstackrel%7By_1%7D%7B9%7D%29%5Cqquad%20%28%5Cstackrel%7Bx_2%7D%7B3%7D~%2C~%5Cstackrel%7By_2%7D%7B5%7D%29%5Cqquad%20%5Cqquad%20d%20%3D%20%5Csqrt%7B%28%20x_2-%20x_1%29%5E2%20%2B%20%28%20y_2-%20y_1%29%5E2%7D%20%5C%5C%5C%5C%5C%5C%20%5Cstackrel%7Bdiameter%7D%7Bd%7D%3D%5Csqrt%7B%5B3%20-%20%28-5%29%5D%5E2%20%2B%20%5B5%20-%209%5D%5E2%7D%5Cimplies%20d%3D%5Csqrt%7B%283%2B5%29%5E2%2B%28-4%29%5E2%7D%20%5C%5C%5C%5C%5C%5C%20d%3D%5Csqrt%7B8%5E2%2B16%7D%5Cimplies%20d%3D%5Csqrt%7B80%7D%5Cimplies%20d%3D4%5Csqrt%7B5%7D~%5Chfill%20%5Cstackrel%7B%5Ctextit%7Bhalf%20the%20diameter%7D%7D%7B%5Ccfrac%7B4%5Csqrt%7B5%7D%7D%7B2%7D%5Cimplies%20%5Cunderset%7Bradius%7D%7B2%5Csqrt%7B5%7D%7D%7D)