Answer:
- number of multiplies is n!
- n=10, 3.6 ms
- n=15, 21.8 min
- n=20, 77.09 yr
- n=25, 4.9×10^8 yr
Step-by-step explanation:
Expansion of a 2×2 determinant requires 2 multiplications. Expansion of an n×n determinant multiplies each of the n elements of a row or column by its (n-1)×(n-1) cofactor determinant. Then the number of multiplies is ...
mpy[n] = n·mp[n-1]
mpy[2] = 2
So, ...
mpy[n] = n! . . . n ≥ 2
__
If each multiplication takes 1 nanosecond, then a 10×10 matrix requires ...
10! × 10^-9 s ≈ 0.0036288 s ≈ 0.004 s . . . for 10×10
Then the larger matrices take ...
n=15, 15! × 10^-9 ≈ 1307.67 s ≈ 21.8 min
n=20, 20! × 10^-9 ≈ 2.4329×10^9 s ≈ 77.09 years
n=25, 25! × 10^-9 ≈ 1.55112×10^16 s ≈ 4.915×10^8 years
_____
For the shorter time periods (less than 100 years), we use 365.25 days per year.
For the longer time periods (more than 400 years), we use 365.2425 days per year.
Answer:
5.9987174899
Step-by-step explanation:
9.654km / 1.609344
= 5.9987174899mi
First term ,a=4 , common difference =4-7=-3, n =50
sum of first 50terms= (50/2)[2×4+(50-1)(-3)]
=25×[8+49]×-3
=25×57×-3
=25× -171
= -42925
derivation of the formula for the sum of n terms
Progression, S
S=a1+a2+a3+a4+...+an
S=a1+(a1+d)+(a1+2d)+(a1+3d)+...+[a1+(n−1)d] → Equation (1)
S=an+an−1+an−2+an−3+...+a1
S=an+(an−d)+(an−2d)+(an−3d)+...+[an−(n−1)d] → Equation (2)
Add Equations (1) and (2)
2S=(a1+an)+(a1+an)+(a1+an)+(a1+an)+...+(a1+an)
2S=n(a1+an)
S=n/2(a1+an)
Substitute an = a1 + (n - 1)d to the above equation, we have
S=n/2{a1+[a1+(n−1)d]}
S=n/2[2a1+(n−1)d]
Answer:
Length of the canal on the map is 16.4 centimeters.
Step-by-step explanation:
If actual length of Panama Canal = 20 kilometers
and length of the canal on map = 4 centimeters
Then scale factor = 
= 
= 
If the actual length of Panama Canal = 82 kilometers
Then the length of canal on the map = Actual length × Scale factor
= 
= 16.4 centimeters
Therefore, length of the canal on the map is 16.4 centimeters.
Answer:
your answer is .945 because you divide 7.37 by 7.80