Sqrt 13 and 1.1919919991... are irrational, meaning that they can't be described in a fraction of one integer over another, like 1/3, 45/44 or 57/107, these numbers are rational. Most irrationals are known constants like e or π, endless non-repeating decimals, or roots of non-perfect numbers like 13, 7, 5 or 2.
Answer:
Step-by-step explanation:
Eek! Let's give this a go. Things we know:
acceleration of Bond in free fall is -9.8 m/s/s
velocity of the truck is 25 m/s
displacement Bond will travel when he jumps is -10 m
What we are looking for is the time it will take him to hit the top of the truck, knowing that the truck can travel from one pole to the next in 1 second.
Our displacement equation is
Δx = v₀t + 1/2at²
Filling in we have

Simplifying we get

This is a quadratic that needs to be solved however you personally solve quadratics. When you do that, you find that the times it will take Bond to drop that displacement is either -.37 seconds or 5.47 seconds. Many things in physics can be negative, like velocity and acceleration, but time NEVER will be. So it takes Bond 5.5 seconds to drop to the roof of the moving truck. That means that he needs to jump when the truck is between the 5th and the 6th poles away from him.
Good luck with this!
Cheers!
Hello :
f(x) = (x − h)2 + k: a <span> vertex of( 2, 3)
h=2 and k=3</span>
<h2>
Answer with explanation:</h2>
Let
be the population mean lifetime of circulated $1 bills.
By considering the given information , we have :-

Since the alternative hypotheses is two tailed so the test is a two tailed test.
We assume that the lifetime of circulated $1 bills is normally distributed.
Given : Sample size : n=50 , which is greater than 30 .
It means the sample is large so we use z-test.
Sample mean : 
Standard deviation : 
Test statistic for population mean :-


The p-value= 
Since the p-value (0.0433834) is greater than the significance level (0.02) , so we do not reject the null hypothesis.
Hence, we conclude that we do not have enough evidence to support the alternative hypothesis that the average lifetime of a circulated $1 bill differs from 18 months.
Answer:
the answer is 70
Step-by-step explanation:
just do 6(-5)+100=70
hope this helps