Answer:
Step-by-step explanation:
Okay, so I think I know what the equations are, but I might have misinterpreted them because of the syntax- I think when you ask a question you can use the symbols tool to input it in a more clear way, otherwise you can use parentheses and such.
Problem 1:
(x²)/4 +y²= 1
y= x+1
*substitute for y*
Now we have a one-variable equation we can solve-
x²/4 + (x+1)² = 1
x²/4 + (x+1)(x+1)= 1
x²/4 + x²+2x+1= 1
*subtract 1 from both sides to set equal to 0*
x²/4 +x^2+2x=0
x²/4 can also be 1/4 * x²
1/4 * x² +1*x² +2x = 0
*combine like terms*
5/4 * x^2+2x+ 0 =0
now, you can use the quadratic equation to solve for x
a= 5/4
b= 2
c=0
the syntax on this will be rough, but I'll do my best...
x= (-b ± √(b²-4ac))/(2a)
x= (-2 ±√(2²-4*(5/4)*(0))/(2*(5/4))
x= (-2 ±√(4-0))/(2.5)
x= (-2±2)/2.5
x will have 2 answers because of ±
x= 0 or x= 1.6
now plug that back into one of the equations and solve.
y= 0+1 = 1
y= 1.6+1= 2.6
Hopefully this explanation was enough to help you solve problem 2.
Problem 2:
x² + y² -16y +39= 0
y²- x² -9= 0
A number is a mathematical object used to count, measure, and label
Answer:
B. 3 people;9 cups
Step-by-step explanation:
Solution:
Given:

To get sin 240 degrees:
240 degrees falls in the third quadrant.
In the third quadrant, only tangent is positive. Hence, sin 240 will be negative.

Using the trigonometric identity;

Hence,

To get cos 240 degrees:
240 degrees falls in the third quadrant.
In the third quadrant, only tangent is positive. Hence, cos 240 will be negative.

Using the trigonometric identity;

Hence,

To get tan 240 degrees:
240 degrees falls in the third quadrant.
In the third quadrant, only tangent is positive. Hence, tan 240 will be positive.

Using the trigonometric identity;

Hence,

To get cosec 240 degrees:

To get sec 240 degrees:

To get cot 240 degrees:
868 is about 870, and 28 is about 30, so your expression would be 870 divided by 30 which would be 29 and the actual answer is 31, so your estimate would be close to your actual answer.