The equation of a line that is perpendicular to the given line is y = –4x – 16.
Solution:
The equation of a line given is y = 0.25x – 7
Slope of the given line(
) = 0.25
Let
be the slope of the perpendicular line.
Passes through the point (–6, 8).
<em>If two lines are perpendicular then the product of the slopes equal to –1.</em>




Point-slope intercept formula:

and 
Substitute these in the formula, we get



Add 8 on both sides of the equation.


Hence the equation of a line that is perpendicular to the given line is
y = –4x – 16
The answer is (3, -7). If the function is written in the form y = a(x –
h)^2 + k, the vertex will be (h, k). Let's write the function 8x^2 – 48x
+ 65 in the form of a(x – h)^2 + k. g(x) = 8x^2 – 48x + 65. g(x) = 8x^2
– 48x + 72 - 72 + 65. g(x) = (8x^2 – 48x + 72) - 7. g(x) = (8 * x^2 – 8
* 6x + 8 * 9) - 7. g(x) = 8(x^2 - 6x + 9) - 7. g(x) = 8(x - 3)^2 - 7.
The function is now in the form a(x – h)^2 + k, where a = 8, h = 3, and k
= -7. Thus, the vertex is (3, -7).
Answer:
2>0 5>-18
Step-by-step explanation:
no thanks but I'll see if I can get friends to join