1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
dedylja [7]
3 years ago
7

Solve for x:3(2x - 7) = 4x +3

Mathematics
2 answers:
saveliy_v [14]3 years ago
8 0

Answer: the answer is X= 12

Anettt [7]3 years ago
3 0

Answer: X = 12

Step-by-step explanation:

6x - 21 = 4x + 3

get x by itself and i chose to subtract 4x on the right side

2x - 21 = 3

add 21 to both sides

2x = 24

x = 12

You might be interested in
Can somebody help me on 23 and 24, it’s geometry
Luda [366]

Question 23:

x = 4

DE = 44

Question 24:

x = 25

SE = 28

Step-by-step explanation:

As RS is the perpendicular bisector of DE, it will divide DE in two equal parts DS and SE

<u>Question number 23:</u>

Given

DS = 3x+10

SE = 6x-2

As the two segments are equal:

DS = SE\\3x+10 = 6x-2

Subtracting 10 from both sides

3x+10-10 = 6x-2-10\\3x = 6x-12

subtracting 6x from both sides

3x -6x = 6x-6x-12\\-3x = -12

Dividing both sides by -3

\frac{-3x}{-3} = \frac{-12}{-3}\\x = 4

Now

DS = 3x+10\\= 3(4)+10\\= 12+10\\=22

And

SE = 6x-2\\= 6(4)-2\\= 24 - 2\\=22\\DE = DS+SE\\= 22+22\\=44

<u>Question No 24:</u>

Given

DS = x+3

DE = 56

We know that:

DS = \frac{1}{2}DE\\x+3 = \frac{56}{2}\\x + 3 = 28\\x = 28-3\\x = 25

So

DS = 25+3 = 28

As DS is 28, SE will also be 28

Hence,

Question 23:

x = 4

DE = 44

Question 24:

x = 25

SE = 28

Keywords: Bisector, Line segment

Learn more about line segments at:

  • brainly.com/question/629998
  • brainly.com/question/6208262

#LearnwithBrainly

4 0
3 years ago
9 6/7 divide 3? explain your answer
boyakko [2]

Answer:

it is a decimal which is 3.28571428571

Step-by-step explanation:

i am in college

7 0
3 years ago
Read 2 more answers
The length of a rectangular floor is 4 feet longer than its width w. The area of the floor is 525 ft^2. A) Write a quadratic equ
mina [271]

Answer:

x^21x+25x-525-0

x^21x+25x-525-0xx^2 - 3.7_) +5^2

x^21x+25x-525-0xx^2 - 3.7_) +5^2(5^2.x - 3.5^2.7

x^21x+25x-525-0xx^2 - 3.7_) +5^2(5^2.x - 3.5^2.7X X 5^2 x(x^2-1-(3.7))+5^2(x-(3.7))=0 x(x-27)+5^2(x-21)-0 (x-21)((x(x-21_) + 5^2(x-21)_)=0 X-21 X-21

x^21x+25x-525-0xx^2 - 3.7_) +5^2(5^2.x - 3.5^2.7X X 5^2 x(x^2-1-(3.7))+5^2(x-(3.7))=0 x(x-27)+5^2(x-21)-0 (x-21)((x(x-21_) + 5^2(x-21)_)=0 X-21 X-215^2

x^21x+25x-525-0xx^2 - 3.7_) +5^2(5^2.x - 3.5^2.7X X 5^2 x(x^2-1-(3.7))+5^2(x-(3.7))=0 x(x-27)+5^2(x-21)-0 (x-21)((x(x-21_) + 5^2(x-21)_)=0 X-21 X-215^2(x-21)(x+5^2)=0

x^21x+25x-525-0xx^2 - 3.7_) +5^2(5^2.x - 3.5^2.7X X 5^2 x(x^2-1-(3.7))+5^2(x-(3.7))=0 x(x-27)+5^2(x-21)-0 (x-21)((x(x-21_) + 5^2(x-21)_)=0 X-21 X-215^2(x-21)(x+5^2)=0(x-21)(x+25)=0

x^21x+25x-525-0xx^2 - 3.7_) +5^2(5^2.x - 3.5^2.7X X 5^2 x(x^2-1-(3.7))+5^2(x-(3.7))=0 x(x-27)+5^2(x-21)-0 (x-21)((x(x-21_) + 5^2(x-21)_)=0 X-21 X-215^2(x-21)(x+5^2)=0(x-21)(x+25)=0X-21=0

x^21x+25x-525-0xx^2 - 3.7_) +5^2(5^2.x - 3.5^2.7X X 5^2 x(x^2-1-(3.7))+5^2(x-(3.7))=0 x(x-27)+5^2(x-21)-0 (x-21)((x(x-21_) + 5^2(x-21)_)=0 X-21 X-215^2(x-21)(x+5^2)=0(x-21)(x+25)=0X-21=0x+25= 0

x^21x+25x-525-0xx^2 - 3.7_) +5^2(5^2.x - 3.5^2.7X X 5^2 x(x^2-1-(3.7))+5^2(x-(3.7))=0 x(x-27)+5^2(x-21)-0 (x-21)((x(x-21_) + 5^2(x-21)_)=0 X-21 X-215^2(x-21)(x+5^2)=0(x-21)(x+25)=0X-21=0x+25= 0x-21+21=21

x^21x+25x-525-0xx^2 - 3.7_) +5^2(5^2.x - 3.5^2.7X X 5^2 x(x^2-1-(3.7))+5^2(x-(3.7))=0 x(x-27)+5^2(x-21)-0 (x-21)((x(x-21_) + 5^2(x-21)_)=0 X-21 X-215^2(x-21)(x+5^2)=0(x-21)(x+25)=0X-21=0x+25= 0x-21+21=21(x+25)-25=-25

x^21x+25x-525-0xx^2 - 3.7_) +5^2(5^2.x - 3.5^2.7X X 5^2 x(x^2-1-(3.7))+5^2(x-(3.7))=0 x(x-27)+5^2(x-21)-0 (x-21)((x(x-21_) + 5^2(x-21)_)=0 X-21 X-215^2(x-21)(x+5^2)=0(x-21)(x+25)=0X-21=0x+25= 0x-21+21=21(x+25)-25=-25x=21

x^21x+25x-525-0xx^2 - 3.7_) +5^2(5^2.x - 3.5^2.7X X 5^2 x(x^2-1-(3.7))+5^2(x-(3.7))=0 x(x-27)+5^2(x-21)-0 (x-21)((x(x-21_) + 5^2(x-21)_)=0 X-21 X-215^2(x-21)(x+5^2)=0(x-21)(x+25)=0X-21=0x+25= 0x-21+21=21(x+25)-25=-25x=21x+25-25=-25

x^21x+25x-525-0xx^2 - 3.7_) +5^2(5^2.x - 3.5^2.7X X 5^2 x(x^2-1-(3.7))+5^2(x-(3.7))=0 x(x-27)+5^2(x-21)-0 (x-21)((x(x-21_) + 5^2(x-21)_)=0 X-21 X-215^2(x-21)(x+5^2)=0(x-21)(x+25)=0X-21=0x+25= 0x-21+21=21(x+25)-25=-25x=21x+25-25=-25x= 21

x^21x+25x-525-0xx^2 - 3.7_) +5^2(5^2.x - 3.5^2.7X X 5^2 x(x^2-1-(3.7))+5^2(x-(3.7))=0 x(x-27)+5^2(x-21)-0 (x-21)((x(x-21_) + 5^2(x-21)_)=0 X-21 X-215^2(x-21)(x+5^2)=0(x-21)(x+25)=0X-21=0x+25= 0x-21+21=21(x+25)-25=-25x=21x+25-25=-25x= 21x= -25

x^21x+25x-525-0xx^2 - 3.7_) +5^2(5^2.x - 3.5^2.7X X 5^2 x(x^2-1-(3.7))+5^2(x-(3.7))=0 x(x-27)+5^2(x-21)-0 (x-21)((x(x-21_) + 5^2(x-21)_)=0 X-21 X-215^2(x-21)(x+5^2)=0(x-21)(x+25)=0X-21=0x+25= 0x-21+21=21(x+25)-25=-25x=21x+25-25=-25x= 21x= -25ensiah193

4 0
3 years ago
Find the product of −3/5 x −1.5.
lilavasa [31]
2+_3/458 find the product
6 0
3 years ago
Help please?!
Furkat [3]
Well from what i know here's what i would put........
-4 * -2 = 8 - 2 = 6
-4 * -1 = 4 - 2 = 2
-4 * 0 = 0 - 2 = -2
so it does represent a function......I really hope that helped!!

8 0
3 years ago
Other questions:
  • 10 Points!
    5·1 answer
  • Julie is a math tutor. She charges each student $210 for the first 7 hours of tutoring and $20 for each additional hour. When th
    12·1 answer
  • Bag A contains red, white and blue marbles such that the red to white marble ratio is 1:3 and the white to blue marble ratio is
    12·1 answer
  • 1.9.PS-16
    12·1 answer
  • if u take my points i will hack you but PLZ i need help I'm taking a math test and frgt to study if I get all four correct I wil
    8·1 answer
  • 3√7 please help I dont understand
    7·1 answer
  • Antonio buys a 10-pound bag of potatoes for $3.98. To the nearest cent, how much is 1 pound of potatoes?
    13·1 answer
  • 50 POINTS !!<br><br> PLEASE HELP ILL GIVE BRAINLIEST !!
    5·2 answers
  • A rectangular piece of paper with length 30cm and width 12cm has two semicircles cut out of it, as shown below.
    13·1 answer
  • Evaluate the given integral by using substitution method:<img src="https://tex.z-dn.net/?f=%5Cint%5Climits%5Ea_b%20%7B%5Cfrac%7B
    14·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!