The answer is 1.b 2. d 3. c 4. c
Angle Y would be 40 degrees
Direction: Opens Down
Vertex:
(
0
,
81
)
(0,81)
Focus:
(
0
,
323
4
)
(0,3234)
Axis of Symmetry:
x
=
0
x=0
Directrix:
y
=
325
4
y=3254
Select a few
x
x
values, and plug them into the equation to find the corresponding
y
y
values. The
x
x
values should be selected around the vertex.
Tap for more steps...
x
y
−
2
77
−
1
80
0
81
1
80
2
77
xy-277-180081180277
Graph the parabola using its properties and the selected points.
Direction: Opens Down
Vertex:
(
0
,
81
)
(0,81)
Focus:
(
0
,
323
4
)
(0,3234)
Axis of Symmetry:
x
=
0
x=0
Directrix:
y
=
325
4
y=3254
x
y
−
2
77
−
1
80
0
81
1
80
2
77
xy-277-180081180277
f
(
x
)
=
8
1
−
x
2
?
?
f(x)=81-x2??
f
(
x
)
=
81
−
x
2
x
?
f(x)=81-x2x?
f
(
x
)
=
81
−
x
2
x
2
?
f(x)=81-x2x2?
f
(
x
)
=
81
−
x
2
x
3
?
f(x)=81-x2x3?
(
)
|
[
]
√
≥
π
7
8
9
Direction: Opens Down
Vertex:
(
0
,
81
)
(0,81)
Focus:
(
0
,
323
4
)
(0,3234)
Axis of Symmetry:
x
=
0
x=0
Directrix:
y
=
325
4
y=3254
Select a few
x
x
values, and plug them into the equation to find the corresponding
y
y
values. The
x
x
values should be selected around the vertex.
Tap for more steps...
x
y
−
2
77
−
1
80
0
81
1
80
2
77
xy-277-180081180277
Graph the parabola using its properties and the selected points.
Direction: Opens Down
Vertex:
(
0
,
81
)
(0,81)
Focus:
(
0
,
323
4
)
(0,3234)
Axis of Symmetry:
x
=
0
x=0
Directrix:
y
=
325
4
y=3254
x
y
−
2
77
−
1
80
0
81
1
80
2
77
xy-277-180081180277
f
(
x
)
=
8
1
−
x
2
?
?
f(x)=81-x2??
f
(
x
)
=
81
−
x
2
x
?
f(x)=81-x2x?
f
(
x
)
=
81
−
x
2
x
2
?
f(x)=81-x2x2?
f
(
x
)
=
81
−
x
2
x
3
?
f(x)=81-x2x3?
(
)
|
[
]
√
≥
π
7
8
9
Direction: Opens Down
Vertex:
(
0
,
81
)
(0,81)
Focus:
(
0
,
323
4
)
(0,3234)
Axis of Symmetry:
x
=
0
x=0
Directrix:
y
=
325
4
y=3254
Select a few
x
x
values, and plug them into the equation to find the corresponding
y
y
values. The
x
x
values should be selected around the vertex.
Tap for more steps...
x
y
−
2
77
−
1
80
0
81
1
80
2
77
xy-277-180081180277
Graph the parabola using its properties and the selected points.
Direction: Opens Down
Vertex:
(
0
,
81
)
(0,81)
Focus:
(
0
,
323
4
)
(0,3234)
Axis of Symmetry:
x
=
0
x=0
Directrix:
y
=
325
4
y=3254
x
y
−
2
77
−
1
80
0
81
1
80
2
77
xy-277-180081180277
f
(
x
)
=
8
1
−
x
2
?
?
f(x)=81-x2??
f
(
x
)
=
81
−
x
2
x
?
f(x)=81-x2x?
f
(
x
)
=
81
−
x
2
x
2
?
f(x)=81-x2x2?
f
(
x
)
=
81
−
x
2
x
3
?
f(x)=81-x2x3?
(
)
|
[
]
√
≥
π
7
8
9
Direction: Opens Down
Vertex:
(
0
,
81
)
(0,81)
Focus:
(
0
,
323
4
)
(0,3234)
Axis of Symmetry:
x
=
0
x=0
Directrix:
y
=
325
4
y=3254
Select a few
x
x
values, and plug them into the equation to find the corresponding
y
y
values. The
x
x
values should be selected around the vertex.
Tap for more steps...
x
y
−
2
77
−
1
80
0
81
1
80
2
77
xy-277-180081180277
Graph the parabola using its properties and the selected points.
Direction: Opens Down
Vertex:
(
0
,
81
)
(0,81)
Focus:
(
0
,
323
4
)
(0,3234)
Axis of Symmetry:
x
=
0
x=0
Directrix:
y
=
325
4
y=3254
x
y
−
2
77
−
1
80
0
81
1
80
2
77
xy-277-180081180277
f
(
x
)
=
8
1
−
x
2
?
?
f(x)=81-x2??
f
(
x
)
=
81
−
x
2
x
?
f(x)=81-x2x?
f
(
x
)
=
81
−
x
2
x
2
?
f(x)=81-x2x2?
f
(
x
)
=
81
−
x
2
x
3
?
f(x)=81-x2x3?
(
)
|
[
]
√
≥
π
7
8
9
vvvvv
Answer:
Step-by-step explanation:

x = [-(-7)±
] / 2(3)
x= (7 ±√85) / 6