Answer:
Use the distance formula on both points AC and AB.
<em>Distance formula is this</em><em>:</em>
<em>\begin{gathered}d=\sqrt{(x2-x1)^2+(y2-y1)^2} \\\\d=\sqrt{(1--5)^2+(8--7)^2} \\\\d=\sqrt{(6)^2+(15)^2} \\\\d=\sqrt{36+225} \\\\d=\sqrt{261} \\\\\end{gathered}d=(x2−x1)2+(y2−y1)2d=(1−−5)2+(8−−7)2d=(6)2+(15)2d=36+225d=261</em>
Distance for AC is 16.16
Now do the same with the numbers for AB and get the distance of 5.39
2. To get the area, use the formula 1/2 x base x height
AB is the base and AC is the height.
1/2 x 16.16 x 5.39 = 43.55
the answer is 43.5
Answer:
The 3rd one 50 - 12p = 26
Step-by-step explanation:
Answer:
1. Statement: <2 and <5 are supplementary. Reason: Given
2. Reason: Vertical
3. Reason: Consecutive interior angles
4. Statement L is parallel to m. Reason: transversal makes equal angles
Have a good day!
we have
f(x)
and
g(x)=-2f(x)+5
so
step 1
First transformation
Reflection about the x-axis
so
f(x) -----> -f(x)
step 2
Second transformation
A vertical dilation with a scale factor of 2
so
-f(x) ------> -2f(x)
step 3
Third transformation
A translation of 5 units up
so
-2f(x) -------> -2f(x)+5