Answer:
600
Step-by-step explanation:
hope it helps :)
Based on the weight and the model that is given, it should be noted that W(t) in radians will be W(t) = 0.9cos(2πt/366) + 8.2.
<h3>
How to calculate the radian.</h3>
From the information, W(t) = a cos(bt) + d. Firstly, calculate the phase shift, b. At t= 0, the dog is at maximum weight, so the cosine function is also at a maximum. The cosine function is not shifted, so b = 1.
Then calculate d. The dog's average weight is 8.2 kg, so the mid-line d = 8.2. W(t) = a cos t + 8.2. Then calculate a, the dog's maximum weight is 9.1 kg. The deviation from the average is 9.1 kg - 8.2 kg = 0.9 kg. W(t) = 0.9cost + 8.2
Lastly, calculate t. The period p = 2π/b = 2π/1 = 2π. The conversion factor is 1 da =2π/365 rad. Therefore, the function with t in radians is W(t) = 0.9cos(2πt/365) + 8.2.
Learn more about radians on:
brainly.com/question/12939121
Answer:
The simplified version of
is
.
Step-by-step explanation:
The given expression is
![\sqrt[3]{135}](https://tex.z-dn.net/?f=%5Csqrt%5B3%5D%7B135%7D)
According to the property of radical expression.
![\sqrt[n]{x}=(x)^{\frac{1}{n}}](https://tex.z-dn.net/?f=%5Csqrt%5Bn%5D%7Bx%7D%3D%28x%29%5E%7B%5Cfrac%7B1%7D%7Bn%7D%7D)
Using this property we get
![\sqrt[3]{135}=(135)^{\frac{1}{3}}](https://tex.z-dn.net/?f=%5Csqrt%5B3%5D%7B135%7D%3D%28135%29%5E%7B%5Cfrac%7B1%7D%7B3%7D%7D)
![\sqrt[3]{135}=(27\times 5)^{\frac{1}{3}}](https://tex.z-dn.net/?f=%5Csqrt%5B3%5D%7B135%7D%3D%2827%5Ctimes%205%29%5E%7B%5Cfrac%7B1%7D%7B3%7D%7D)
![\sqrt[3]{135}=(3^3\times 5)^{\frac{1}{3}}](https://tex.z-dn.net/?f=%5Csqrt%5B3%5D%7B135%7D%3D%283%5E3%5Ctimes%205%29%5E%7B%5Cfrac%7B1%7D%7B3%7D%7D)
![[\because (ab)^x=a^xb^x]](https://tex.z-dn.net/?f=%5B%5Cbecause%20%28ab%29%5Ex%3Da%5Exb%5Ex%5D)
![[\because \sqrt[n]{x}=(x)^{\frac{1}{n}}]](https://tex.z-dn.net/?f=%5B%5Cbecause%20%5Csqrt%5Bn%5D%7Bx%7D%3D%28x%29%5E%7B%5Cfrac%7B1%7D%7Bn%7D%7D%5D)
![\sqrt[3]{135}=3\sqrt[3]{5}](https://tex.z-dn.net/?f=%5Csqrt%5B3%5D%7B135%7D%3D3%5Csqrt%5B3%5D%7B5%7D)
Therefore the simplified version of
is
.
<h2>The cost is same for both the options if we purchase 27 photos</h2>
Step-by-step explanation:
Cost of a photo at a local store is $0.25 per photo. This cost can be modeled to be linear in number of photos as
.
Cost of photos purchased online is $0.15 per photo. However there is a shipping cost of $2.70. This can also be modeled to be linear in number of photos as
.
Let us assume both costs are the same if we purchase
photos.
So, 



∴ On purchasing 27 photos, cost for both the options is the same.