C obtuse scalene
Source:
http://www.1728.org/triang.htm
Answer:
10: -11n^5
12: 6k^2 -6k+7
Step-by-step explanation:
Ok so what your gonna do is add or subtract the ones with the same exponent.
so -15+4= -11 since they are both n^5 you can add them so your answer is:
-11n^2
now you have 8k^2-k-5k+7-2k. so you are gonna rearrange them so the same exponents are together.(keep the sign in front in front, if no sign it is positive)
8k^2-2k^2-5k-k+7
add like exponents
6k^2-6k+7
<span>Simplifying:
2x2 + -8x + -90 = 0
Reorder the terms:
-90 + -8x + 2x2 = 0
Solving
-90 + -8x + 2x2 = 0
Solving for variable 'x'.
Factor out the Greatest Common Factor (GCF), '2'.
2(-45 + -4x + x2) = 0
Factor a trinomial.
2((-5 + -1x)(9 + -1x)) = 0
Ignore the factor 2.
Subproblem 1:
Set the factor '(-5 + -1x)' equal to zero and attempt to solve:
Simplifying
-5 + -1x = 0
Solving
-5 + -1x = 0
Move all terms containing x to the left, all other terms to the right.
Add '5' to each side of the equation.
-5 + 5 + -1x = 0 + 5
Combine like terms:
-5 + 5 = 0
0 + -1x = 0 + 5
-1x = 0 + 5
Combine like terms:
0 + 5 = 5
-1x = 5
Divide each side by '-1'.
x = -5
Simplifying
x = -5
Subproblem 2:
Set the factor '(9 + -1x)' equal to zero and attempt to solve:
Simplifying
9 + -1x = 0
Solving
9 + -1x = 0
Move all terms containing x to the left, all other terms to the right.
Add '-9' to each side of the equation.
9 + -9 + -1x = 0 + -9
Combine like terms:
9 + -9 = 0
0 + -1x = 0 + -9
-1x = 0 + -9
Combine like terms:
0 + -9 = -9
-1x = -9
Divide each side by '-1'.
x = 9
Simplifying
x = 9
Solution
x = {-5, 9}</span>
Answer: Nick must now at least 6 yards.
Step-by-step explanation:
Since Nick has $80 saved already, and he makes $40 per yard that he mows, thus can be put up in an equation as:
= 80 + 40y
where y = number of yards
Since Nick needs to raise at least $320 for his trip, the equation to solve this will be:
80 + 40x ≥ 320
40x ≥ 320 - 80
40x ≥ 240
x ≥ 240/40
x ≥ 6
Therefore, Nick must now at least 6 yards.
Answer:
If our random variable of interest for this case is X="the number of teenagers between 12-17 with smartphone" we can model the variable with this distribution:

And the mean for this case would be:

And the standard deviation would be given by:

Step-by-step explanation:
If our random variable of interest for this case is X="the number of teenagers between 12-17 with smartphone" we can model the variable with this distribution:

And the mean for this case would be:

And the standard deviation would be given by:
