Answer:
0.2611 = 26.11% probability that exactly 2 calculators are defective.
Step-by-step explanation:
For each calculator, there are only two possible outcomes. Either it is defective, or it is not. The probability of a calculator being defective is independent of any other calculator, which means that the binomial probability distribution is used to solve this question.
Binomial probability distribution
The binomial probability is the probability of exactly x successes on n repeated trials, and X can only have two outcomes.
In which
is the number of different combinations of x objects from a set of n elements, given by the following formula.
And p is the probability of X happening.
5% of calculators coming out of the production lines have a defect.
This means that 
Fifty calculators are randomly selected from the production line and tested for defects.
This means that 
What is the probability that exactly 2 calculators are defective?
This is P(X = 2). So


0.2611 = 26.11% probability that exactly 2 calculators are defective.
Given a table, with an input (x) and output (y) , you could actually use the slope formula to get the rate of change because slope is the same thing as rate of change. If you recall, the slope formula is (y2-y1)÷(x2-x1)
Just pick two points from the chart and plug them in and that is your rate of change
Step-by-step explanation:
(cos 10° − sin 10°) / (cos 10° + sin 10°)
Rewrite 10° as 45° − 35°.
(cos(45° − 35°) − sin(45° − 35°)) / (cos(45° − 35°) + sin(45° − 35°))
Use angle difference formulas.
(cos 45° cos 35° + sin 45° sin 35° − sin 45° cos 35° + cos 45° sin 35°) / (cos 45° cos 35° + sin 45° sin 35° + sin 45° cos 35° − cos 45° sin 35°)
sin 45° = cos 45°, so dividing:
(cos 35° + sin 35° − cos 35° + sin 35°) / (cos 35° + sin 35° + cos 35° − sin 35°)
Combining like terms:
(2 sin 35°) / (2 cos 35°)
Dividing:
tan 35°
Answer:
224
Step-by-step explanation:
polynomial degree:224
leading term:7x^223
leading coefficient:7