1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Sophie [7]
3 years ago
8

Let a = 24, b = 12, and c = 4. Evaluate ac+bc .

Mathematics
2 answers:
seropon [69]3 years ago
6 0

Answer:

144

Step-by-step explanation:

If u multiply 24 x4 it is 96 and when I multiply 12x4 is 48 and u add 96 plus 48 u get 144.

Ratling [72]3 years ago
4 0
I’m pretty sure the answer is ✨144✨ because you have to multiply 24 by 4 which will give you 96. Then you have to multiply 12 by 4 which will give you 48. Next you have to add 96 + 48 = ✨144✨
You might be interested in
How many times does 15 go into 270
olga2289 [7]
 its a decimal but....5.4 times 
8 0
3 years ago
Read 2 more answers
Find the area of the figure. Use 3.14 for π.<br><br> The area of the figure is __ft2.
Mariulka [41]

Answer:

42,5ft2

Step-by-step explanation:

mutiply 3 x 3=9 than divide by 2 that is equals

4,5, mutiply 4 x 3 that is equals to 12 and divide by 2 that is equals to 6, then you dont need to divide thst one because its not a triangle, mutiply 4 x 8 = 32 32 + 4,5 + 6 = 42,5.

6 0
2 years ago
What is the slope of the line between
Oxana [17]
Slope = (change in y)/(change in x)
.. = (-14 -0)/(2 -0)
.. = -14/2
slope = -7
5 0
3 years ago
Read 2 more answers
Solve the equation in the interval [0,2π]. If there is more than one solution write them separated by commas.
Sedaia [141]
\large\begin{array}{l} \textsf{Solve the equation for x:}\\\\ &#10;\mathsf{(tan\,x)^2+2\,tan\,x-4.76=0}\\\\\\ \textsf{Substitute}\\\\ &#10;\mathsf{tan\,x=t\qquad(t\in \mathbb{R})}\\\\\\ \textsf{so the equation &#10;becomes}\\\\ \mathsf{t^2+2t-4.76=0}\quad\Rightarrow\quad\begin{cases} &#10;\mathsf{a=1}\\\mathsf{b=2}\\\mathsf{c=-4.76} \end{cases} &#10;\end{array}


\large\begin{array}{l} \textsf{Using &#10;the quadratic formula:}\\\\ \mathsf{\Delta=b^2-4ac}\\\\ &#10;\mathsf{\Delta=2^2-4\cdot 1\cdot (-4.76)}\\\\ &#10;\mathsf{\Delta=4+19.04}\\\\ \mathsf{\Delta=23.04}\\\\ &#10;\mathsf{\Delta=\dfrac{2\,304}{100}}\\\\ &#10;\mathsf{\Delta=\dfrac{\diagup\!\!\!\! 4\cdot 576}{\diagup\!\!\!\! 4\cdot&#10; 25}}\\\\ \mathsf{\Delta=\dfrac{24^2}{5^2}} \end{array}

\large\begin{array}{l}&#10; \mathsf{\Delta=\left(\dfrac{24}{5}\right)^{\!2}}\\\\ &#10;\mathsf{\Delta=(4.8)^2}\\\\\\ &#10;\mathsf{t=\dfrac{-b\pm\sqrt{\Delta}}{2a}}\\\\ &#10;\mathsf{t=\dfrac{-2\pm\sqrt{(4.8)^2}}{2\cdot 1}}\\\\ &#10;\mathsf{t=\dfrac{-2\pm 4.8}{2}}\\\\ \mathsf{t=\dfrac{\diagup\!\!\!\! &#10;2\cdot (-1\pm 2.4)}{\diagup\!\!\!\! 2}}\\\\\mathsf{t=-1\pm 2.4} &#10;\end{array}

\large\begin{array}{l} \begin{array}{rcl} &#10;\mathsf{t=-1-2.4}&~\textsf{ or }~&\mathsf{t=-1+2.4}\\\\ &#10;\mathsf{t=-3.4}&~\textsf{ or }~&\mathsf{t=1.4} \end{array} &#10;\end{array}


\large\begin{array}{l} \textsf{Both &#10;are valid values for t. Substitute back for }\mathsf{t=tan\,x:}\\\\ &#10;\begin{array}{rcl} \mathsf{tan\,x=-3.4}&~\textsf{ or &#10;}~&\mathsf{tan\,x=1.4} \end{array}\\\\\\ \textsf{Take the inverse &#10;tangent function:}\\\\ \begin{array}{rcl} &#10;\mathsf{x=tan^{-1}(-3.4)+k\cdot \pi}&~\textsf{ or &#10;}~&\mathsf{x=tan^{-1}(1.4)+k\cdot \pi}\\\\ &#10;\mathsf{x=-tan^{-1}(3.4)+k\cdot \pi}&~\textsf{ or &#10;}~&\mathsf{x=tan^{-1}(1.4)+k\cdot \pi} \end{array}\\\\\\ &#10;\textsf{where k in an integer.} \end{array}

__________


\large\begin{array}{l}&#10; \textsf{Now, restrict x values to the interval &#10;}\mathsf{[0,\,2\pi]:}\\\\ \bullet~~\textsf{For }\mathsf{k=0:}\\\\ &#10;\begin{array}{rcl} &#10;\mathsf{x=-tan^{-1}(3.4)


\large\begin{array}{l}&#10; \bullet~~\textsf{For }\mathsf{k=1:}\\\\ \begin{array}{rcl} &#10;\mathsf{x=-tan^{-1}(3.4)+\pi}&~\textsf{ or &#10;}~&\mathsf{x=tan^{-1}(1.4)+\pi} \end{array}\\\\\\ &#10;\boxed{\begin{array}{c}\mathsf{x=-tan^{-1}(3.4)+\pi} &#10;\end{array}}\textsf{ is in the 2}^{\mathsf{nd}}\textsf{ quadrant.}\\\\ &#10;\mathsf{x\approx 1.86~rad~~(106.39^\circ)}\\\\\\ &#10;\boxed{\begin{array}{c}\mathsf{x=tan^{-1}(1.4)+\pi} \end{array}}\textsf{&#10; is in the 3}^{\mathsf{rd}}\textsf{ quadrant.}\\\\ \mathsf{x\approx &#10;4.09~rad~~(234.46^\circ)}\\\\\\ \end{array}


\large\begin{array}{l}&#10; \bullet~~\textsf{For }\mathsf{k=2:}\\\\ \begin{array}{rcl} &#10;\mathsf{x=-tan^{-1}(3.4)+2\pi}&~\textsf{ or &#10;}~&\mathsf{x=tan^{-1}(1.4)+2\pi>2\pi~~\textsf{(discard)}} &#10;\end{array}\\\\\\ \boxed{\begin{array}{c}\mathsf{x=-tan^{-1}(3.4)+2\pi} &#10;\end{array}}\textsf{ is in the 4}^{\mathsf{th}}\textsf{ quadrant.}\\\\ &#10;\mathsf{x\approx 5.00~rad~~(286.39^\circ)} \end{array}


\large\begin{array}{l}&#10; \textsf{Solution set:}\\\\ &#10;\mathsf{S=\left\{tan^{-1}(1.4);\,-tan^{-1}(3.4)+\pi;\,tan^{-1}(1.4)+\pi;\,-tan^{-1}(3.4)+2\pi\right\}}&#10; \end{array}


<span>If you're having problems understanding this answer, try seeing it through your browser: brainly.com/question/2071152</span>


\large\textsf{I hope it helps.}


Tags: <em>trigonometric trig quadratic equation tangent tan solve inverse symmetry parity odd function</em>

6 0
3 years ago
Can someone help me? I will mark brainliest!
Tcecarenko [31]

A.

If you work the exponents using laws of indices, they give the same result.

4.2 × 10⁹/ 1.4 x 10⁴ 4.2 × 10²/ 1.4 × 10^(-3)

using laws of indices...

since they are of the same base subtract the powers..

= 10^(9-4) = 10^(2-(-3))

= 10⁵ = 10^ (2+3) = 10⁵

B.

3.0 × 10⁵

C.

30,000.

7 0
3 years ago
Other questions:
  • School starts in 45 minutes and you live 17 miles from school. What average speed (in miles per hour) do you need to travel in o
    12·1 answer
  • Can someone help me figure out what 40% of 65 is?​
    8·2 answers
  • The Art Club decided to sell t-shirts in order to pay for their field trip to a nearby museum. They started with 460 t-shirts an
    9·1 answer
  • Can somebody please explain how to do this please? (5 points)
    11·1 answer
  • 1. Round this number to the nearest hundred.
    13·2 answers
  • Factoring trinomials: 8)-2x2 + 8x + 10 *
    14·2 answers
  • The perimeter of a trapezoid is 39a – 7. Three sides have the following lengths: 9a, 5a + 1, and 17a – 6. What is the length of
    13·2 answers
  • What is the slope of the line whose equation is<br> 2y = 5x + 4?<br> 1) 5 2) 2 3) 5/2 4) 2/5
    10·1 answer
  • Write an equation of the line below​
    6·1 answer
  • Priscilla started a part time job working at an after school program.
    7·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!