They contain genetic information and assist in making proteins
A Negative stain such as India ink or Congo red-Look for the presence of a capsule.
This stain method is usually used to stain the area around the microorganism.
B The Gram stain-Divide bacteria into two groups based on cell wall structure (thick vs. thin).
This is type of differential staining used to distinguish organisms based on their staining properties. Gram + and Gram- bacteria stain different because of different cell wall structure.
C The Ziehl-Neelsen Acid-fast stain- Identify bacteria with waxy cell walls such as: Mycobacterium tuberculosis (the cause of TB).
This is also differential staining method which uses heat and phenol to derive dye into the cells with lipid-rich walls.
D Simple stain with a basic dye-Stain microbes a bright color to make it easier to see them in bright field microscopy.
One dye is used in simple staining in order to determinate the size, shape and arrangement of the cells.
E The Schaeffer-Fulton Endospore stain-Identify Bacillus or Clostridium species, such as the causative agents of anthrax, botulism, tetanus and gangrene.
This is a special type of staining only used for the bacteria that can form endospores. Bacteria are first treated with heat and then with malachite green, which is very strong stain that can penetrate endospores.
Answer:
Taking into account the principle of osmosis, the question that best addresses experimental design is <em>How does the effect of environmental sucrose concentrations impact the movement of water across a membrane?</em>
Explanation:
The experimental design of the student, made with dialysis bags and sucrose at different concentrations should recreate the principle of osmosis, of importance in living beings for organic homeostasis.
Osmosis consists of the movement of water - through a semi-permeable membrane - from a less concentrated solution to a higher concentration solution, following a gradient, to achieve balance.
The student will observe in his experiment that water moves from the solution with less sucrose concentration to the higher concentration of sugar. Beakers with the highest concentration of sucrose will have the highest weight, due to the increase in liquid volume.
How does the effect of environmental sucrose concentrations impact the movement of water across a membrane?
The experiment shows that:
- The water from the beaker with less sucrose concentration moved -through the dialysis tubes and the membrane- to the beaker containing the most concentrated sucrose.
- Different sucrose concentrations will attract different amounts of water, which influences the final weight of each container.
With this experiment the principle of osmosis is confirmed, where the concentration of a solute determines the amount of water that passes through a semipermeable membrane -following a concentration gradient- until equilibrium is reached.
Learn more:
brainly.com/question/1517477
Mental wise would go down many aspects even the thought of dieing soon and emotional impact of loved ones and worrieness.