1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Sophie [7]
3 years ago
6

What this question?????????

Mathematics
2 answers:
NeTakaya3 years ago
4 0

Answer:

The Answer is A

Step-by-step explanation:

Tanzania [10]3 years ago
3 0

Answer:

A. \frac{3}{4} = \frac{21}{28}

Step-by-step explanation:

\frac{21}{28} ÷ \frac{7}{7}  = \frac{3}{4}

21 ÷ 7 = 3

28 ÷ 7 = 4

You might be interested in
7. If F(x) = f(g(x)), where f(-2) = 8, f'(-2) = 4, f'(5) = 3, g(5)=-2, gʻ(5) = 6.. Find F'(5) <br>​
serious [3.7K]

Answer:

I'm going to lay this out in a chart so it's a little easier to see:

F(x) = f(g(x))

x | f (x) | f ' (x) | g (x) | g ' (x)

--------------------------------------

-2 | 8 | 4 |

5 | | 3 | -2 | 6

Remember the chain rule, which says

(f (g (x))) ' = g ' (x) f ' (g (x))

When they ask for F ' (5), they are asking for (f (g (x))) ' when x = 5.

Using the chain rule, that's

F ' (5) = g ' (5) f ' (g (5))

We can simplify using the numbers provided.

F ' (5) = (6) f ' (-2)

F ' (5) = (6) (4)

F ' (5) = 24

I hope that helps!

by jannat <33

7 0
2 years ago
Read 2 more answers
AB=2y+1, BC=y+1,CD=7x-3,DA=3x what is x and y
sattari [20]
I attached the picture associated with this question.

Answer:
x = 2
y = 5

Explanation:
ABCD is a parallelogram. This means that each two opposite sides are equal.
This means that:
1- AB = CD
2y + 1 = 7x - 3 ...........> equation I
2- AD = BC
3x = y + 1
This can be rewritten as:
y = 3x - 1............> equation II

Substitute with equation II in equation I and solve for x as follows:
2y + 1 = 7x - 3 ...........> equation I
2(3x - 1) + 1 = 7x - 3
6x - 2 + 1 = 7x - 3
6x - 1 = 7x - 3
7x - 6x = -1 + 3
x = 2

Substitute with x in equation I to get y as follows:
y = 3x - 1
y = 3(2) - 1
y = 6 - 1
y = 5

Hope this helps :)

3 0
2 years ago
A regression analysis between weight (y in pounds) and height (x in inches) resulted in the following least squares line: ŷ = 13
Lunna [17]

Answer:

y=6x +135

And for this case the interpretation for the slope would be that for every unit that the height in inches increase then the weight in pounds increase 6 units.

For the intercept of 135 represent the amount initial amount of weight for the scale.

Step-by-step explanation:

We assume that they use least squares in order to create the regression equation

For this case we need to calculate the slope with the following formula:

m=\frac{S_{xy}}{S_{xx}}

Where:

S_{xy}=\sum_{i=1}^n x_i y_i -\frac{(\sum_{i=1}^n x_i)(\sum_{i=1}^n y_i)}{n}

S_{xx}=\sum_{i=1}^n x^2_i -\frac{(\sum_{i=1}^n x_i)^2}{n}

With these we can find the sums:

And the slope would be:

m=6

The means for x and y are given by:

\bar x= \frac{\sum x_i}{n}

\bar y= \frac{\sum y_i}{n}

And we can find the intercept using this:

b=\bar y -m \bar x

For this case we know that the line adjusted is:

y=6x +135

And for this case the interpretation for the slope would be that for every unit that the height in inches increase then the weight in pounds increase 6 units.

For the intercept of 135 represent the amount initial amount of weight for the scale.

3 0
3 years ago
Identify the correct measure of the Thumbtack to the nearest 1/8 inches​
bulgar [2K]

Answer:

3/4 or 6/8

Step-by-step explanation:

the thumbtack goes to 12/16 on the ruler which can be simplified to 3/4 or 6/8.

6 0
3 years ago
Solve the equation in the interval [0,2π]. If there is more than one solution write them separated by commas.
Sedaia [141]
\large\begin{array}{l} \textsf{Solve the equation for x:}\\\\ &#10;\mathsf{(tan\,x)^2+2\,tan\,x-4.76=0}\\\\\\ \textsf{Substitute}\\\\ &#10;\mathsf{tan\,x=t\qquad(t\in \mathbb{R})}\\\\\\ \textsf{so the equation &#10;becomes}\\\\ \mathsf{t^2+2t-4.76=0}\quad\Rightarrow\quad\begin{cases} &#10;\mathsf{a=1}\\\mathsf{b=2}\\\mathsf{c=-4.76} \end{cases} &#10;\end{array}


\large\begin{array}{l} \textsf{Using &#10;the quadratic formula:}\\\\ \mathsf{\Delta=b^2-4ac}\\\\ &#10;\mathsf{\Delta=2^2-4\cdot 1\cdot (-4.76)}\\\\ &#10;\mathsf{\Delta=4+19.04}\\\\ \mathsf{\Delta=23.04}\\\\ &#10;\mathsf{\Delta=\dfrac{2\,304}{100}}\\\\ &#10;\mathsf{\Delta=\dfrac{\diagup\!\!\!\! 4\cdot 576}{\diagup\!\!\!\! 4\cdot&#10; 25}}\\\\ \mathsf{\Delta=\dfrac{24^2}{5^2}} \end{array}

\large\begin{array}{l}&#10; \mathsf{\Delta=\left(\dfrac{24}{5}\right)^{\!2}}\\\\ &#10;\mathsf{\Delta=(4.8)^2}\\\\\\ &#10;\mathsf{t=\dfrac{-b\pm\sqrt{\Delta}}{2a}}\\\\ &#10;\mathsf{t=\dfrac{-2\pm\sqrt{(4.8)^2}}{2\cdot 1}}\\\\ &#10;\mathsf{t=\dfrac{-2\pm 4.8}{2}}\\\\ \mathsf{t=\dfrac{\diagup\!\!\!\! &#10;2\cdot (-1\pm 2.4)}{\diagup\!\!\!\! 2}}\\\\\mathsf{t=-1\pm 2.4} &#10;\end{array}

\large\begin{array}{l} \begin{array}{rcl} &#10;\mathsf{t=-1-2.4}&~\textsf{ or }~&\mathsf{t=-1+2.4}\\\\ &#10;\mathsf{t=-3.4}&~\textsf{ or }~&\mathsf{t=1.4} \end{array} &#10;\end{array}


\large\begin{array}{l} \textsf{Both &#10;are valid values for t. Substitute back for }\mathsf{t=tan\,x:}\\\\ &#10;\begin{array}{rcl} \mathsf{tan\,x=-3.4}&~\textsf{ or &#10;}~&\mathsf{tan\,x=1.4} \end{array}\\\\\\ \textsf{Take the inverse &#10;tangent function:}\\\\ \begin{array}{rcl} &#10;\mathsf{x=tan^{-1}(-3.4)+k\cdot \pi}&~\textsf{ or &#10;}~&\mathsf{x=tan^{-1}(1.4)+k\cdot \pi}\\\\ &#10;\mathsf{x=-tan^{-1}(3.4)+k\cdot \pi}&~\textsf{ or &#10;}~&\mathsf{x=tan^{-1}(1.4)+k\cdot \pi} \end{array}\\\\\\ &#10;\textsf{where k in an integer.} \end{array}

__________


\large\begin{array}{l}&#10; \textsf{Now, restrict x values to the interval &#10;}\mathsf{[0,\,2\pi]:}\\\\ \bullet~~\textsf{For }\mathsf{k=0:}\\\\ &#10;\begin{array}{rcl} &#10;\mathsf{x=-tan^{-1}(3.4)


\large\begin{array}{l}&#10; \bullet~~\textsf{For }\mathsf{k=1:}\\\\ \begin{array}{rcl} &#10;\mathsf{x=-tan^{-1}(3.4)+\pi}&~\textsf{ or &#10;}~&\mathsf{x=tan^{-1}(1.4)+\pi} \end{array}\\\\\\ &#10;\boxed{\begin{array}{c}\mathsf{x=-tan^{-1}(3.4)+\pi} &#10;\end{array}}\textsf{ is in the 2}^{\mathsf{nd}}\textsf{ quadrant.}\\\\ &#10;\mathsf{x\approx 1.86~rad~~(106.39^\circ)}\\\\\\ &#10;\boxed{\begin{array}{c}\mathsf{x=tan^{-1}(1.4)+\pi} \end{array}}\textsf{&#10; is in the 3}^{\mathsf{rd}}\textsf{ quadrant.}\\\\ \mathsf{x\approx &#10;4.09~rad~~(234.46^\circ)}\\\\\\ \end{array}


\large\begin{array}{l}&#10; \bullet~~\textsf{For }\mathsf{k=2:}\\\\ \begin{array}{rcl} &#10;\mathsf{x=-tan^{-1}(3.4)+2\pi}&~\textsf{ or &#10;}~&\mathsf{x=tan^{-1}(1.4)+2\pi>2\pi~~\textsf{(discard)}} &#10;\end{array}\\\\\\ \boxed{\begin{array}{c}\mathsf{x=-tan^{-1}(3.4)+2\pi} &#10;\end{array}}\textsf{ is in the 4}^{\mathsf{th}}\textsf{ quadrant.}\\\\ &#10;\mathsf{x\approx 5.00~rad~~(286.39^\circ)} \end{array}


\large\begin{array}{l}&#10; \textsf{Solution set:}\\\\ &#10;\mathsf{S=\left\{tan^{-1}(1.4);\,-tan^{-1}(3.4)+\pi;\,tan^{-1}(1.4)+\pi;\,-tan^{-1}(3.4)+2\pi\right\}}&#10; \end{array}


<span>If you're having problems understanding this answer, try seeing it through your browser: brainly.com/question/2071152</span>


\large\textsf{I hope it helps.}


Tags: <em>trigonometric trig quadratic equation tangent tan solve inverse symmetry parity odd function</em>

6 0
3 years ago
Other questions:
  • Jerry is paving the parking spot shown below. It costs \$50$50dollar sign, 50 to pave each square meter.
    7·2 answers
  • What’s the answer to my question
    13·1 answer
  • Which measure is usually the least useful in describing the data for a stem-and-leaf plot? range median mode mean
    14·1 answer
  • han exit showed that 7 out of every 8 voters cast a ballotin favor of an amendment to a city charter. at this rate, how many peo
    6·1 answer
  • F(x)=13x-14<br> Find the domain of f(x)
    11·1 answer
  • Look at the formula for the area of a triangle. a = 1 2 bh which is a solution for h?
    15·1 answer
  • Completing the square
    11·1 answer
  • HURRY JUST GIVE THE ANSWER PLZ!!
    13·2 answers
  • Help me i am stuck pictures attached
    6·1 answer
  • At a farmer’s market, a basket of strawberries costs $20 and a basket of peaches costs $18. On Saturday, $430 worth of strawberr
    8·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!