Answer: Option B) Nuclei house the DNA, which is the blueprint for proteins. Cell types I, II, and III can synthesize proteins.
Explanation:
All the genetic information that determines the traits expressed in an organism are loaded up within the DNA sequence. Hence, several genes that codes functional proteins are derived from the DNA, making DNA a blueprint for protein synthesis.
Thus, Cell types I, II, and III with DNA can synthesize proteins.
Answer:
There are many types of evidence which support the theory of evolution such as comparative anatomy, fossil records, phylogenetic relationship, embryology et cetera
Comparative anatomy includes homologous organs and analogous organs. They support divergent and convergent evolution respectively.
For example, the homologous structure of limb of humans, birds, bat, horse, whale et cetera show that they are made up of the same set of bones which are humerus, radius, ulna, carpals, metacarpals, and phalanges.
It shows divergent evolution and supports that these organisms have evolved from a common ancestor.
Embryological evidence: When early stages of embryological development of different organisms are compared, it is found that these stages are similar at different levels of development.
For example:
- The appearance of pharyngeal-arch (gill-like structures) in vertebrates during embryo development.
- Salamanders and terrestrial frogs pass through larval stages within an egg. They possess the features similar to aquatic larvae, however, when they hatched out the eggs being ready for life on land.
mRNA or Messenger RNA
mRNA transcribes the genetic code from DNA into a form that can be read and used to make proteins. mRNA carries genetic information from the nucleus to the cytoplasm of a cell.<span>rRNA or Ribosomal RNA
rRNA is located in the cytoplasm of a cell, where ribosomes are found. rRNA directs the translation of mRNA into proteins.</span><span>tRNA or Transfer RNA
Like rRNA, tRNA is located in the cellular cytoplasm and is involved in protein synthesis. Transfer RNA brings or transfers amino acids to the ribosome that correspond to each three-nucleotide codon of rRNA. The amino acids then can be joined together and processed to make polypeptides and proteins</span>
<span>
</span>