You need more context to the question, however I think I have it figured out.
Independent variable- various colors of light
dependent variable- The growth rate from each color
Hair grows out of little pockets in your skin, called follicles. Here's how it happens:
Your hair begins growing from a root in the bottom of the follicle. The root is made up of cells of protein.
Blood from the blood vessels in your scalp feeds the root, which creates more cells and makes the hair grow.
The hair gets pushed up through the skin as it grows, passing an oil gland along the way. The oil gland adds oil to the hair and keeps it shiny and soft. It can make it greasy, too. That's why you need to wash your hair.
The hair dies by the time it is long enough to poke out through the skin. Yes, hair is dead. That's why it doesn't hurt to get a haircut.
Hair on the rest of your body goes through this same process, but the whole cycle only lasts for a month or so. That's why body hair does not grow very long in length like the hair on your head does.
Here are some facts about follicles and your hair:
You are born with all of the follicles you will ever have — about 5 million.
You have about 100,000 follicles on your scalp, which is the skin on your head.
Hair grows very fast and male hair grows faster than female hair. The only part of your body that grows faster is bone marrow, the soft stuff inside your bones. The hair on your head grows about 6 inches a year. So, even though it's one of the fastest-growing things on your body, it takes a while to grow it really long.
Some follicles stop growing hair as you get older. This happens more in some people than in others. That's why some people get thinner hair when they get older, or go bald.
The amount of OXYGEN dissolved in ocean waters quickly decreases with depth
to reach a minimum at around 1000 m of depth.
phytoplanktonic organisms produce enormpus amounts of oxygen through photosynthesis.
But oxygen is also used up very quickly by animals that live in the water:
at depth (beyond the photic zone, around 100 m)
oxygen can not be produced (lack of sunlight) and whatever amount is present is rapidly consumed:
as a consequence, oxygen is quickly depleted below 100 m
in the Bathypelagic and the Abyssopelagic zones there are less and less consumers, so oxygen is not used up at the same rate it is in surface waters.
In shallow waters there is plenty of sunlight, and as a consequence
nutrients are depleted pretty quickly by the abundance of marine life.
As soon as we move below the photic zone, where animal life decreases significantly,
nutrients start to increase again, reaching a maximum by the base of the Mesopelagic zone,
essentially in coincidence with the oxygen minimum.
Past that point, nutrients decrease very slowly because only few organisms live there.
At these depths, organisms are not very abundant because of the harsh conditions for life we encounter here:
they can survive, with no light at all and under enormous hydrostatic pressure,
only because of the presence of oxygen brought at depth by deep currents (which are, again, density-driven)
and of the slightly increased amounts of nutrients.
This diagram shows the variations of oxygen and nutrients (here represented by the phosphate ion) with depth in ocean waters.
surface-water circulation
Surface-water circulation is wind-driven: the wind drags the surface waters of Earth's oceans in gigantic gyres
centered in the northern and southern Atlantic and Pacific Oceans and in the southern Indian Ocean.
These gyres rotate clockwise in the northern hemisphere and counter-clockwise in the southern hemisphere (Coriolis effect).
We have already seen that surface-water circulation is wind-driven.
Deep-water circulation instead is density-driven
This means that differences in water density cause motion of water masses at depth.
Density (mass over volume) changes with changing salinity and temperature of the ocean:
higher salinity implies higher density (and viceversa)
while higher temperatures imply lower density.
Tropical waters are warmer than polar waters because of more intense solar radiation around the equator:
as long as surface waters are warm, they can never sink to the bottom of the ocean.
Surface waters can only sink to the bottom when their density is the same or higher than that of deep waters.
This happens for instance in the North Atlantic ocean, where the formation of ice pack
causes a very cold water mass to slightly increase its salinity (and hence its density);
and all around Antarctica, where the extremely cold temperatures create similar conditions.
In the figure, pink indicates warm waters, while blue indicates cold waters.
while darker pink indicates waters that are always warm (tropical waters, between about 30°N and 30°S).
Light blue indicates the North Atlantic Deep Water, a very dense body of water that sinks to the bottom
but is still less dense then the Antarctic Bottom Water (in darker blue)
a higher amount of solar radiation reaches Earth around the equator,
where temperatures are on average higher than at higher latitudes.
We would expect that higher temperatures in ocean waters would cause
a greater amount of water evaporation, and therefore an increase in ocean salinity.
But when we observe salinity variations, we notice that the higher values
are found around 23° of latitude instead.
This occurs because of the high level of precipitation in equatorial areas, where rain water dilutes the salinity of the ocean.
Areas around the tropics, up to 30° N and S, are extremely dry (that is where most of Earth desert are found).
While the heat is still enough to cause substantial evaporation,
precipitation is extremely scarce or absent.
The consequence is an increase in salinity at these latitudes (known as the tropics).
The density of the ocean water is affected mainly by its temperature and its salinity.Temperature and salinity vary consistently with latitude only at the surface.At depth they remain essentially constant, and as a consequence the density too does not change much.In this graph we can see how density of the ocean waters,when measured at low latitudes (solid red line) increases quickly between ca. 100 m and 1000.This vertical interval of rapid density increase is defined as the pycnocline.where mixing with the atmosphere occurs.Below the mixed layer we distinguish between upper and deep waters: the Upper water coincides with the pycnoclineand is found above what is called the Deep water, where conditions are more stable
I think this one <span>best describes computer modeling in biology: </span>a. A computer is used to calculate a scale of a lake’s turbidity due to algal growth from too much nitrate pollution in the water.
Prokaryotes: the simplest and oldest form of life, single celled, start of live/where all life came from, they can live in any environment on Earth, bacteria are the only prokaryotes. They DO NOT have a nucleus. Tails help them move along with little hairs around the cell. No organelles, they have circular chromosomes, they're unicellular or colonial, they have a cell wall and cell membrane.
Eukaryotes: Have a nucleus as well as organelles, linear chromosomes, have a cell wall (plants&fungus), have a cell membrane.
Hope I was able to help! :)