Answer:
Yes because it fits the Pythagorean Theorem
Step-by-step explanation:
see: 5 ^2 = 25
and 3^2 + 4^2 = 9 + 16 = 25
25 = 25
so it is
{tan(60) + tan(10)}/{1 - tan(60)*tan(10)} - {tan(60) - tan(10)}/{1 + tan(10)*tan(60)}
<span>ii) Taking LCM & simplifying with applying tan(60) = √3, the above simplifies to: </span>
<span>= 8*tan(10)/{1 - 3*tan²(10)} </span>
<span>iii) So tan(70) - tan(50) + tan(10) = 8*tan(10)/{1 - 3*tan²(10)} + tan(10) </span>
<span>= [8*tan(10) + tan(10) - 3*tan³(10)]/{1 - 3*tan²(10)} </span>
<span>= [9*tan(10) - 3*tan³(10)]/{1 - 3*tan²(10)} </span>
<span>= 3 [3*tan(10) - tan³(10)]/{1 - 3*tan²(10)} </span>
<span>= 3*tan(30) = 3*(1/√3) = √3 [Proved] </span>
<span>[Since tan(3A) = {3*tan(A) - tan³(A)}/{1 - 3*tan²(A)}, </span>
<span>{3*tan(10) - tan³(10)}/{1 - 3*tan²(10)} = tan(3*10) = tan(30)]</span>
Justin rides 550 kilometers
or
justin rides 17 meter
3x + 1 = y
2x + 3y = 14
To solve this system of equations, we are going to use the substitution method. Substitution the equation where the variable is isolated into the second equation. In this system of equations, y is isolated, so we will replace y in the second equation with 3x + 1.
2x + 3y = 14
2x + 3(3x + 1) = 14
2x + 9x + 3 = 14
We will add the like terms and subtract 3 from both sides of the equation.
11x + 3 = 14
11x = 11
x = 1
In this system of equations, x is equal to 1. Now we will go back and solve for y, plugging in 1 for x.
3(1) + 1 = y
2(1) + 3y = 14
3 + 1 = y
2 + 3y = 14
4 = y
3y = 2
4 = y
4 = y
The solution to this system of equations is (1, 4).