Keywords
triangle,perimeter,distance, length, side, points
we know that
The <u>perimeter</u> of a<u> triangle</u> is the sum of the three <u>length</u> <u>side</u>
To find the<u> length</u> <u>side</u> calculate the <u>distance</u> between two <u>points</u>
The formula to calculate the <u>distance</u> between to <u>points</u> is equal to

Step 1
Find the <u>distance</u> ZY
substitute the values


Step 2
Find the <u>distance</u> XY
substitute the values

Step 3
Find the <u>perimeter</u> of the <u>triangle</u>

we have


Substitute

therefore
the answer is

Answer:
B
Step-by-step explanation:
sinA=opp/hyp
sinA=16/20=4/5
cosA=adj/hyp
cosA=12/20=3/5
Answer:
Step-by-step explanation:
2500 - 12%
12% of 2500 = 300
2500 - 300 = 2200
12% of 2200 = 264
2200-264=1936
Repeat another 4 times
Answer:
$230
Step-by-step explanation:
100%-20%=80%
80%=184
1%=184÷80=2.3
100%=2.3x100=$230
Hope this helps! Thanks.
Answer:
If `r` and `R` and the respective radii of the smaller and the bigger semi-circles then the area of the shaded portion in the given figure is: (FIGURE) `pir^2\ s qdotu n i t s` (b) `piR^2-pir^2\ s qdotu n i t s` (c) `piR^2+pir^2\ s qdotu n i t s` (d) `piR^2\ s qdotu n i t s`
Step-by-step explanation: