Answer:
With respect to the differences in the DNA sequence of six species, including the human one, it is true that the DNA sequences may vary but the aminoacid sequences are identical.
Explanation:
Options for this question:
- <em>The DNA sequences may vary but the amino acid sequences are identical.
</em>
-
The nitrogen bases in the nucleotides must also be different in each.
-
The process in producing additional DNA, replication, is identical in all six.
-
The process of producing DNA, or replication, varies due to the differences in the DNA codes.
The different species that exist have specific genomes for each of them, this is the <u>genetic information contained in the DNA varies from one species to another</u>, as can be seen in the scheme (see image). However, the genetic code is universal, and does not vary from one species to another.
The genetic code is found in the RNA molecule and is a sequence of nucleotides that, organized in triplets (codons), are responsible for the synthesis of specific amino acids. An RNA molecule contains the information necessary for protein synthesis.
The scheme shows the differences of five species with respect to the human, based on the respective DNA sequences. But what it does not show is a universally accepted truth, that the nucleotide sequence encoding an amino acid is the same for each of these species.
Learn more:
Genetic code brainly.com/question/15338
An example of a missense mutation in a protein-encoding gene would most likely be a neutral mutation is option B: replacement of a polar amino acid with another polar amino acid at the protein's surface.
A frequent and well-known example of a missense mutation is the blood condition sickle-cell anemia. Missense mutations exist in the DNA at a single location in sickle-cell anemia patients. A different amino acid is required in this missense mutation, which also alters the overall structure of the protein. Similarly, replacement of a polar amino acid by another polar Ami no acid at the protein's surface is a missense mutation causing change in a single site.
A neutral mutation is one whose fixation is unrelated to natural selection. Therefore, the independence of a mutation's fixation from natural selection can be used to define the selective neutrality of a mutation.
To know more about mutations, refer to the following link:
brainly.com/question/20407521
#SPJ4
Complete question is:
Which example of a missense mutation in a protein-encoding gene would most likely be a neutral mutation?
a) Replacement of a polar amino acid with a nonpolar amino acid at the protein's outer surface
b) Replacement of a polar amino acid with another polar amino acid at the protein's surface
c) Replacement of a polar amino acid with another polar amino acid in the protein's interior
d) Replacement of a polar amino acid with a nonpolar amino acid in the protein's interior
C looked it up on google yw
4 significant figures I think
Answer:
The correct answer is "permissiveness".
Explanation:
The missing options of the question are:
permissiveness
synergistic effect
antagonism
additive effect
The correct answer is "permissiveness",
In biology, a permissive effect is defined as the effect that one hormone has enabling that a second hormone to exert its biological activity. Thyroid hormone has a permissive effect on the hormone epinephrine, by synthesizing ß adrenergic receptors, it enables the hormone epinephrine binds to them and cause the cells of the bronchioles to dilate.