Answer:
The approximate change in entropy is -14.72 J/K.
Explanation:
Given that,
Temperature = 22°C
Internal energy 
Final temperature = 16°C
We need to calculate the approximate change in entropy
Using formula of the entropy

Where,
= internal energy
T = average temperature
Put the value in to the formula


Hence, The approximate change in entropy is -14.72 J/K.
Explanation:
v = wavelength x frequency
330 = 5 . 10-² m x f
f = 6600 Hz
the frequency that human can hear is about 20 Hz - 20000 Hz
so human can hear the note.
The truck has more KE than the bike
Explanation:
It is a good idea to start with room temperature water in the calorimeter because the room temperature water helps to determine the heating up/cooling down because of the environment as the experiment takes place. Because the calorimeter heat is the same as the heat of the water.
The total work <em>W</em> done by the spring on the object as it pushes the object from 6 cm from equilibrium to 1.9 cm from equilibrium is
<em>W</em> = 1/2 (19.3 N/m) ((0.060 m)² - (0.019 m)²) ≈ 0.031 J
That is,
• the spring would perform 1/2 (19.3 N/m) (0.060 m)² ≈ 0.035 J by pushing the object from the 6 cm position to the equilibrium point
• the spring would perform 1/2 (19.3 N/m) (0.019 m)² ≈ 0.0035 J by pushing the object from the 1.9 cm position to equilbrium
so the work done in pushing the object from the 6 cm position to the 1.9 cm position is the difference between these.
By the work-energy theorem,
<em>W</em> = ∆<em>K</em> = <em>K</em>
where <em>K</em> is the kinetic energy of the object at the 1.9 cm position. Initial kinetic energy is zero because the object starts at rest. So
<em>W</em> = 1/2 <em>mv</em> ²
where <em>m</em> is the mass of the object and <em>v</em> is the speed you want to find. Solving for <em>v</em>, you get
<em>v</em> = √(2<em>W</em>/<em>m</em>) ≈ 0.46 m/s