This may helpv^2=u^2+2as. v=0 at top of flight. a=acceleration of gravity(vo^2)/2a=s.
Answer:
wavelength = 24 m
Period = 10 s
f = 0.1 Hz
Amplitude = 4 m
Explanation:
Wavelength:
Since the boats are at crest and trough, respectively at the same time. Hence, the horizontal distance between them is the wavelength of the wave:
<u>wavelength = 24 m</u>
Period:
The period is given as:

<u>Period = 10 s</u>
<u></u>
Frequency:
The frequency is given as:

<u>f = 0.1 Hz</u>
<u></u>
Amplitude:
Amplitude will be half the distance between extreme points, that is, crest and trough:
Amplitude = 8 m/2
<u>Amplitude = 4 m</u>
The force would be coming from the right causing the box the lean/ slide to left, if it wasnt sticky.
Answer:
The power expended by the car during the acceleration is 116.38KW
Explanation:
Power is a term that defines the rate at which energy is expended whenever work is done.
Power can be given as Force X velocity.
Force can be found using the formula:
F = mass X acceleration.
In this case,
F = 1100kg X 4.6m/s2
F = 5060 N
The final velocity, v of the car can be obtained from this formula:
v = u+ at
U = initial velocity = 0 (since the car started from rest)
a = acceleration = 4.6m/s2
t = time = 5 seconds
v = 0 + 4.6 X 5 = 23 m/s
Therefore, the power expended is 5060N X 23m/s=116,380W
The power expended by the car during the acceleration is 116.38KW