Solar energy, wind energy, and hydroelectric energy are all renewable energy
Answer:
The minimum wall thickness required for the spherical tank is 0.0189 m
Explanation:
Given data:
d = inside diameter = 8.1 m
P = internal pressure = 1.26 MPa
σ = 270 MPa
factor of safety = 2
Question: Determine the minimum wall thickness required for the spherical tank, tmin = ?
The allow factor of safety:

The minimun wall thickness:

Explanation:
There's not enough information in the problem to solve it. We need to know either the initial speed of the lorry, or the time it takes to stop.
For example, if we assume the initial speed of the lorry is 25 m/s, then we can find the rate of deceleration:
v² = v₀² + 2aΔx
(0 m/s)² = (25 m/s)² + 2a (50 m)
a = -6.25 m/s²
We can then use Newton's second law to find the force:
F = ma
F = (7520 kg) (-6.25 m/s²)
F = -47000 N
Answer:
w = 3.2 rev / min
Explanation:
For this exercise we will use the centrine acceleration equal to the acceleration of gravity
a = v² / r
Angular and linear variables are related.
v = w r
Let's replace
a = w² r = g
w = √ g / r
r = d / 2
r = 175/2 = 87.5 m
w = √( 9.8 / 87.5)
w = 0.3347 rad / s
Let's reduce to rotations per min
w = 0.3347 rad / s (1 rov / 2pi rad) (60 s / 1 min)
w = 3.2 rev / min
Suppose the space station rotates counterclockwise, we have two possibilities for the car
The first car turns counterclockwise (same direction of the station
=
r
[texwv_{c}[/tex] =
/ r
[texwv_{c}[/tex] = 25.0 / 87.5
[texwv_{c}[/tex] = 0.286 rad / s
When the two rotate in the same direction their angular speeds are subtracted
w total = w -[texwv_{c}[/tex]
w total = 0.3347 - 0.286
w total= 0.487 rad / s
The car goes in the opposite direction of the station the speeds add up
w = 0.3347 + 0.286
w = 0.62 rad / s
From this values we can see that the person feels a variation of the acceleration of gravity, feels that he has less weight when he goes in the same direction of the season and that his weight increases when he goes in the opposite direction to the season.