We shall consider two properties:
1. Temperature difference
2. Thermal conductivity of the material
Use a cylindrical rod of a given material (say steel) which is insulated around its circumference.
One end of the rod is dipped in a large reservoir of water at 100 deg.C and the other end is dipped in water (with known volume) at 40 deg. C. The cold water if stored in a cylinder which is insulated on all sides. A thermometer reads the temperature of the cold water as a function of time.
This experiment will show that
(a) heat flows from a region of high temperature to a region of lower temperature.
(b) The thermal energy of a body increases when heat is added to it, and its temperature will rise.
(c) The thermal conductivity of water determines how quickly its temperature will rise. If mercury replaces water in the cold cylinder, its temperature will rise at a different rate because its thermal conductivity is different.
Hey how's your day going
I hope after I answer that you understand and don't just paste my answer into your assignment!!! (<- read!!!)
Answer \|/
Ice is less dense than water.
Reason why \|/
When water freezes the molecules inside completely stop moving (They still vibrate but don't change their position much). In doing so, they spread out a touch which makes it less dense than liquid water. So ice floats
Answer:
The final pressure of the gas is 9.94 atm.
Explanation:
Given that,
Weight of argon = 0.16 mol
Initial volume = 70 cm³
Angle = 30°C
Final volume = 400 cm³
We need to calculate the initial pressure of gas
Using equation of ideal gas


Where, P = pressure
R = gas constant
T = temperature
Put the value in the equation



We need to calculate the final temperature
Using relation pressure and volume



Hence, The final pressure of the gas is 9.94 atm.
<span>protection from injustices</span>
Answer:
v = √(25/m)
Explanation:
KE = ½mv²
v = √(2KE/m)
We know the kinetic energy, but not the mass
v = √(25/m)