Answer:
I think the correct answer would be the third option. As the elements around the star begins to emit more and more electromagnetic radiation, the rocky materials are pulled in by the electromagnetic radiation. They are being drawn closer to the star and there would be a very high chance of a nuclear
Explanation:
Answer:

Explanation:
The resistance of a wire is given by:

where
is the resistivity of the material
L is the length of the wire
A is the cross-sectional area of the wire
1) The first wire has length L and cross-sectional area A. So, its resistance is:

2) The second wire has length twice the first one: 2L, and same thickness, A. So its resistance is

3) The third wire has length L (as the first one), but twice cross sectional area, 2A. So, its resistance is

By comparing the three expressions, we find

So, this is the ranking of the wire from most current (least resistance) to least current (most resistance).
There are other forces at work here nevertheless we will imagine
it is just a conservation of momentum exercise. Also the given mass of the
astronaut is light astronaut.
The solution for this problem is using the formula: m1V1=m2V2 but
we need to get V1:
V1= (m2/m1) V2
V1= (10/63) 12 = 1.9 m/s will be the final speed of the astronaut after
throwing the tank.
We can make pretty good guesses for their masses, but kinetic energy also depends on their speeds, which we don't know, and may change.
As an example ... If the truck, the van, the car, and the bike are all parked at the mall, then a scampering mouse has more kinetic energy than all of them combined.
As the question stands, no answer is possible.