Answer:3.67 m/s
Explanation:
mass of block(m)=2 kg
Velocity of block=6 m/s
spring constant(k)=2 KN/m
Spring compression x=15 cm
Conserving Energy
energy lost by block =Gain in potential energy in spring

![2\left [ 6^2-v_2^2\right ]=2\times 10^3\times \left [ 0.15\right ]^2](https://tex.z-dn.net/?f=2%5Cleft%20%5B%206%5E2-v_2%5E2%5Cright%20%5D%3D2%5Ctimes%2010%5E3%5Ctimes%20%5Cleft%20%5B%200.15%5Cright%20%5D%5E2)

Sound waves need different media in order to travel. This travels by the movement of the atom transferred to another up to its destination. The speed of sound is greatest in solids since the molecules of solid are closely packed together, followed by liquid and they are slowest in gases.
it is just a matter of integration and using initial conditions since in general dv/dt = a it implies v = integral a dt
v(t)_x = integral a_{x}(t) dt = alpha t^3/3 + c the integration constant c can be found out since we know v(t)_x at t =0 is v_{0x} so substitute this in the equation to get v(t)_x = alpha t^3 / 3 + v_{0x}
similarly v(t)_y = integral a_{y}(t) dt = integral beta - gamma t dt = beta t - gamma t^2 / 2 + c this constant c use at t = 0 v(t)_y = v_{0y} v(t)_y = beta t - gamma t^2 / 2 + v_{0y}
so the velocity vector as a function of time vec{v}(t) in terms of components as[ alpha t^3 / 3 + v_{0x} , beta t - gamma t^2 / 2 + v_{0y} ]
similarly you should integrate to find position vector since dr/dt = v r = integral of v dt
r(t)_x = alpha t^4 / 12 + + v_{0x}t + c let us assume the initial position vector is at origin so x and y initial position vector is zero and hence c = 0 in both cases
r(t)_y = beta t^2/2 - gamma t^3/6 + v_{0y} t + c here c = 0 since it is at 0 when t = 0 we assume
r(t)_vec = [ r(t)_x , r(t)_y ] = [ alpha t^4 / 12 + + v_{0x}t , beta t^2/2 - gamma t^3/6 + v_{0y} t ]
For the future, Put the right subject please, The answer is to protect us from harmful UV rays, Which include UVA, UVB, And UBC.
The speed and velocity of a moving body become identical when it tends to move in a straight line.