There are 0.5 liters in 500 ml.
cot(<em>θ</em>) = cos(<em>θ</em>)/sin(<em>θ</em>)
So if both cot(<em>θ</em>) and cos(<em>θ</em>) are negative, that means sin(<em>θ</em>) must be positive.
Recall that
cot²(<em>θ</em>) + 1 = csc²(<em>θ</em>) = 1/sin²(<em>θ</em>)
so that
sin²(<em>θ</em>) = 1/(cot²(<em>θ</em>) + 1)
sin(<em>θ</em>) = 1 / √(cot²(<em>θ</em>) + 1)
Plug in cot(<em>θ</em>) = -2 and solve for sin(<em>θ</em>) :
sin(<em>θ</em>) = 1 / √((-2)² + 1)
sin(<em>θ</em>) = 1/√(5)
Nick had 3 1/4 bottles before, and he had 1 2/4 bottles left, so that means
3 1/4 - 1 2/4 = 1.75
1.75= 1 3/4.
So, I do not agree with nick.
Hope this helps!!! :)
Could you give some information? The table would be really good, I’d be able to help you more efficiently. ☺️