1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
cestrela7 [59]
3 years ago
7

which interaction of nature binds neutrons and protons into nuclei? A. strong B. weak C. electromagnetic D. gravitational

Physics
1 answer:
iris [78.8K]3 years ago
7 0
I think it is A. Strong force
You might be interested in
The school bag of four students A,B,C,D measures 9kg, 2800gm, 2kg and 8000gm respectively. Whose bag is the lightest
inna [77]

Answer:

Student C

Explanation:

order from heaviest to lightest is...

9 kg (A) , 8000g (8 kg) (D) , 2800g (2.8kg) (B), 2 kg (C)

5 0
3 years ago
Which produces more gravitational force on your textbook: you or the earth?
Yuri [45]
The earth obviously because it is on Earth like we are and it has the same gravital properties. It falls when you drop it and rises when you pick it up
5 0
3 years ago
Two traveling sinusoidal waves are described by the wave functions y1 = 4.85 sin [(4.35x − 1270t)] y2 = 4.85 sin [(4.35x − 1270t
Tamiku [17]

Answer:

Approximately 9.62.

Explanation:

y_1 = 4.85\, \sin[(4.35\, x - 1270\, t) + 0].

y_2 = 4.85\, \sin[(4.35\, x - 1270\, t) + (-0.250)].

Notice that sine waves y_1 and y_2 share the same frequency and wavelength. The only distinction between these two waves is the (-0.250) in y_2\!.

Therefore, the sum (y_1 + y_2) would still be a sine wave. The amplitude of (y_1 + y_2)\! could be found without using calculus.

Consider the sum-of-angle identity for sine:

\sin(a + b) = \sin(a) \cdot \cos(b) + \cos(a) \cdot \sin(b).

Compare the expression \sin(a + b) to y_2. Let a = (4.35\, x - 1270) and b = (-0.250). Apply the sum-of-angle identity of sine to rewrite y_2\!.

\begin{aligned}y_2 &= 4.85\, \sin[(\underbrace{4.35\, x - 1270\, t}_{a}) + (\underbrace{-0.250}_{b})]\\ &= 4.85 \, [\sin(4.35\, x - 1270\, t)\cdot \cos(-0.250) \\ &\quad\quad\quad\; + \cos(4.35\, x - 1270\, t)\cdot \sin(-0.250)] \end{aligned}.

Therefore, the sum (y_1 + y_2) would become:

\begin{aligned}& y_1 + y_2\\[0.5em] &= 4.85\, [\sin(4.35\, x - 1270\, t) \\ &\quad \quad \quad\;+\sin(4.35\, x - 1270\, t)\cdot \cos(-0.250) \\ &\quad\quad\quad\; + \cos(4.35\, x - 1270\, t)\cdot \sin(-0.250)] \\[0.5em] &= 4.85\, [\sin(4.35\, x - 1270\, t)\cdot (1 + \cos(-0.250)) \\ &\quad\quad\quad\; + \cos(4.35\, x - 1270\, t)\cdot \sin(-0.250)] \end{aligned}.

Consider: would it be possible to find m and c that satisfy the following hypothetical equation?

\begin{aligned}& (4.85\, m)\cdot \sin((4.35\, x - 1270\, t) + c)\\&= 4.85\, [\sin(4.35\, x - 1270\, t)\cdot (1 + \cos(-0.250)) \\ &\quad\quad\quad\; + \cos(4.35\, x - 1270\, t)\cdot \sin(-0.250)] \end{aligned}.

Simplify this hypothetical equation:

\begin{aligned}& m\cdot \sin((4.35\, x - 1270\, t) + c)\\&=\sin(4.35\, x - 1270\, t)\cdot (1 + \cos(-0.250)) \\ &\quad\quad + \cos(4.35\, x - 1270\, t)\cdot \sin(-0.250)\end{aligned}.

Apply the sum-of-angle identity of sine to rewrite the left-hand side:

\begin{aligned}& m\cdot \sin((4.35\, x - 1270\, t) + c)\\[0.5em]&=m\, \sin(4.35\, x - 1270\, t)\cdot \cos(c) \\ &\quad\quad + m\, \cos(4.35\, x - 1270\, t)\cdot \sin(c) \\[0.5em] &=\sin(4.35\, x - 1270\, t)\cdot (m\, \cos(c)) \\ &\quad\quad + \cos(4.35\, x - 1270\, t)\cdot (m\, \sin(c)) \end{aligned}.

Compare this expression with the right-hand side. For this hypothetical equation to hold for all real x and t, the following should be satisfied:

\displaystyle 1 + \cos(-0.250) = m\, \cos(c), and

\displaystyle \sin(-0.250) = m\, \sin(c).

Consider the Pythagorean identity. For any real number a:

{\left(\sin(a)\right)}^{2} + {\left(\cos(a)\right)}^{2} = 1^2.

Make use of the Pythagorean identity to solve this system of equations for m. Square both sides of both equations:

\displaystyle 1 + 2\, \cos(-0.250) +  {\left(\cos(-0.250)\right)}^2= m^2\, {\left(\cos(c)\right)}^2.

\displaystyle {\left(\sin(-0.250)\right)}^{2} = m^2\, {\left(\sin(c)\right)}^2.

Take the sum of these two equations.

Left-hand side:

\begin{aligned}& 1 + 2\, \cos(-0.250) + \underbrace{{\left(\cos(-0.250)\right)}^2 + {\left(\sin(-0.250)\right)}^2}_{1}\\ &= 1 + 2\, \cos(-0.250) + 1 \\ &= 2 + 2\, \cos(-0.250) \end{aligned}.

Right-hand side:

\begin{aligned} &m^2\, {\left(\cos(c)\right)}^2 + m^2\, {\left(\sin(c)\right)}^2 \\ &= m^2\, \left( {\left(\sin(c)\right)}^2 +  {\left(\cos(c)\right)}^2\right)\\ &= m^2\end{aligned}.

Therefore:

m^2 = 2 + 2\, \cos(-0.250).

m = \sqrt{2 + 2\, \cos(-0.250)} \approx 1.98.

Substitute m = \sqrt{2 + 2\, \cos(-0.250)} back to the system to find c. However, notice that the exact value of c\! isn't required for finding the amplitude of (y_1 + y_2) = (4.85\, m)\cdot \sin((4.35\, x - 1270\, t) + c).

(Side note: one possible value of c is \displaystyle \arccos\left(\frac{1 + \cos(0.250)}{\sqrt{2 \times (1 + \cos(0.250))}}\right) \approx 0.125 radians.)

As long as \! c is a real number, the amplitude of (y_1 + y_2) = (4.85\, m)\cdot \sin((4.35\, x - 1270\, t) + c) would be equal to the absolute value of (4.85\, m).

Therefore, the amplitude of (y_1 + y_2) would be:

\begin{aligned}|4.85\, m| &= 4.85 \times \sqrt{2 + 2\, \cos(-0.250)} \\&\approx 9.62 \end{aligned}.

8 0
3 years ago
What holds the moon in place, orbiting around the Earth
AnnZ [28]

The Earth's gravity keeps the Moon orbiting us. It keeps changing the direction of the Moon's velocity. This means gravity makes the Moon accelerate all the time, even though its speed remains constant.

4 0
3 years ago
Why does gas have the most energy but moves the slowest
Ede4ka [16]

Gases have heavier molecules. Since all gases have the same average kinetic energy at the same temperature, lighter molecules move faster and heavier molecules move slower on average.

4 0
3 years ago
Other questions:
  • Lasers utilize concentrated light waves, focused precisely and used for certain applications. What are some common uses of laser
    8·2 answers
  • A table of mass 10 kg is lifted so that the gravitational potential energy of the table increases by 1470 J. How high is the tab
    14·2 answers
  • If the velocity of an object changes from 15 m/s during a time interval of 4s what is the acceleration of the object
    7·1 answer
  • An electron has a constant acceleration of +3.3 m/s2. at a certain instant its velocity is +8.6 m/s. what is its velocity (a) 2.
    11·1 answer
  • Physics questions please help me
    13·1 answer
  • if you went to the doctor 3 weeks ago && youre going back, will they have to measure your height and weigh you again?
    5·2 answers
  • What is the car's average velocity (in m/s) in the interval between t = 0.5 s<br> to t = 2 s?
    9·1 answer
  • If an object of mass 70kg falls from a height of 500 m, what is the maximum velocity of the object?
    14·1 answer
  • The pressure of a liquid at the 10.2 meters depth is 80100 Pascal. - What is the density of the fluid in kg/cubic meter?​
    12·1 answer
  • An object’s position vs. time graph is a straight line with positive slope, draw the velocity vs. time graph that represents thi
    10·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!