Answer:
3.5
Step-by-step explanation:
Answer:
2/5
Step-by-step explanation:
Let's find the probability of each condition first.
For P(4), there is only one option: 4. This is 1 out of 5.
For P(even), this includes 4 and 6. However, we already had 4 from our last condition so we can remove this option. This is again 1 out of 5.
Adding them together, we will get 2/5.
The answer is 2/5
Answer:
(1, 3)
Step-by-step explanation:
You are given the h coordinate of the vertex as 1, but in order to find the k coordinate, you have to complete the square on the parabola. The first few steps are as follows. Set the parabola equal to 0 so you can solve for the vertex. Separate the x terms from the constant by moving the constant to the other side of the equals sign. The coefficient HAS to be a +1 (ours is a -2 so we have to factor it out). Let's start there. The first 2 steps result in this polynomial:
. Now we factor out the -2:
. Now we complete the square. This process is to take half the linear term, square it, and add it to both sides. Our linear term is 2x. Half of 2 is 1, and 1 squared is 1. We add 1 into the set of parenthesis. But we actually added into the parenthesis is +1(-2). The -2 out front is a multiplier and we cannot ignore it. Adding in to both sides looks like this:
. Simplifying gives us this:

On the left we have created a perfect square binomial which reflects the h coordinate of the vertex. Stating this binomial and moving the -3 over by addition and setting the polynomial equal to y:

From this form,

you can determine the coordinates of the vertex to be (1, 3)
Answer:
Step-by-step explanation:
Consider the graphs of the
and
.
By equating the expressions, the intersection points of the graphs can be found and in this way delimit the area that will rotate around the Y axis.
then
o
. Therefore the integration limits are:
and 
The inverse functions are given by:
and
. Then
The volume of the solid of revolution is given by:
![\int\limits^{64}_ {0} \, [2\sqrt{y} - \frac{y}{4}]^{2} dy = \int\limits^{64}_ {0} \, [4y - y^{3/2} + \frac{y^{2}}{16} ]\ dy = [2y^{2} - \frac{2}{5}y^{5/2} + \frac{y^{3}}{48} ]\limits^{64}_ {0} = 546.133 u^{2}](https://tex.z-dn.net/?f=%5Cint%5Climits%5E%7B64%7D_%20%7B0%7D%20%5C%2C%20%5B2%5Csqrt%7By%7D%20-%20%5Cfrac%7By%7D%7B4%7D%5D%5E%7B2%7D%20%20dy%20%3D%20%5Cint%5Climits%5E%7B64%7D_%20%7B0%7D%20%5C%2C%20%5B4y%20-%20y%5E%7B3%2F2%7D%20%2B%20%5Cfrac%7By%5E%7B2%7D%7D%7B16%7D%20%5D%5C%20%20dy%20%3D%20%5B2y%5E%7B2%7D%20-%20%5Cfrac%7B2%7D%7B5%7Dy%5E%7B5%2F2%7D%20%2B%20%5Cfrac%7By%5E%7B3%7D%7D%7B48%7D%20%5D%5Climits%5E%7B64%7D_%20%7B0%7D%20%3D%20546.133%20u%5E%7B2%7D)
Total surface area: approximately 979.3 inches squared (total), 754.3 inches (lateral), and 225 inches (bottom)