Answer:
$0.05
Step-by-step explanation:
Hope it helps and have a great day =D
FIRST PARTWe need to find sin α, cos α, and cos β, tan β
α and β is located on third quadrant, sin α, cos α, and sin β, cos β are negative
Determine ratio of ∠α
Use the help of right triangle figure to find the ratio
tan α = 5/12
side in front of the angle/ side adjacent to the angle = 5/12
Draw the figure, see image attached
Using pythagorean theorem, we find the length of the hypotenuse is 13
sin α = side in front of the angle / hypotenuse
sin α = -12/13
cos α = side adjacent to the angle / hypotenuse
cos α = -5/13
Determine ratio of ∠β
sin β = -1/2
sin β = sin 210° (third quadrant)
β = 210°

SECOND PARTSolve the questions
Find sin (α + β)
sin (α + β) = sin α cos β + cos α sin β



Find cos (α - β)
cos (α - β) = cos α cos β + sin α sin β



Find tan (α - β)


Simplify the denominator


Simplify the numerator


Simplify the fraction

Answer:
Y=4+3-8x
Y=7-8x
Step-by-step explanation:
The discount sales price would be $218