Answer:
Option "C" is correct.
Explanation:
The reason is that, form the two experiments it was concluded that both O1 and O2 were recessive, so all these remaining options which says that any or both of them are dominant are incorrect.
Answer:
Lactose intolerance
Explanation:
Lactose intolerance occurs when your small intestine doesn't produce enough of an enzyme (lactase) to digest milk sugar (lactose)
Answer:
Microfilaments, Intermediate filaments and microtubules
Explanation:
Three distinct elements make up the cytoskeleton in eukaryotic cells are:
1. Microfilaments or actin filaments which are composed of actin proteins. The functions of those filaments are: muscle contraction (myosin heads move “walk” on actin filaments), the movement of the cell, intracellular transport, maintaince of the cell shape..
2. Intermediate filaments which can be made of vimentins, keratin, lamin, desmin… Their functions are: the maintenance of cell shape, anchoring organelles, structural components of the nuclear lamina, cell-cell and cell-matrix junctions…
3. Microtubules are filaments polymers of alpha and beta tubulin. Their roles are in intracellular transport (associated with motor protein dyneins and kinesins), formation of the axoneme of cilia and flagella, formation of the mitotic spindle.
Answer:
a. Biomagnification
Explanation:
Biomagnification is the name given to the progressive accumulation of substances from one trophic level to another along a food chain. Thus, the substance will have its highest concentration in individuals who occupy trophic levels furthest from producers.
For biomagnification to occur, substances must be fat soluble (lipid soluble) and thus adhere to living tissues. Another feature of substances that undergo biomagnification is that they are generally not biodegradable or metabolized by the body.
The phenomenon is quite common with heavy metals (lead; mercury) and certain chlorinated and aromatic organic compounds with higher molecular mass, such as the insecticide DDT.