The distance from the person to the mirror is 5 ft. The distance from the mirror to the giraffe is 15 ft.
15/5 = 3
Multiply the height of the person by 3:
5 ft = 60 inches 60+3 = 63 inches
63 x 3 = 189 inches
189/12 = 15.75 ft = 15 feet 9 inches
The giraffe is 15 ft 9 inches tall
Answer:
2) d= -3
5) f= -44
Step-by-step explanation:
You're welcome :)
1 imperial foot has approximately 30.48 metric centimeters, and for one present we need 3 ft, or namely 3(30.48) cm, how many can we get from 102 cm? 102 ÷ 3(30.48) ≈ 1.1155, so barely just one present.
Answer:
The answer is

Step-by-step explanation:
Remember:


First: Find the slope.

.
Second: Solve for the y-intercept

.
Third: Plug in.

Answer:
(2x-1)(2x+1)(x^2+2) = 0
Step-by-step explanation:
Here's a trick: Use a temporary substitution for x^2. Let p = x^2. Then 4x^4+7x^2-2=0 becomes 4p^2 + 7p - 2 = 0.
Find p using the quadratic formula: a = 4, b = 7 and c = -2. Then the discriminant is b^2-4ac, or (7)^2-4(4)(-2), or 49+32, or 81.
Then the roots are:
-7 plus or minus √81
p= --------------------------------
8
p = 2/8 = 1/4 and p = -16/8 = -2.
Recalling that p = x^2, we let p = x^2 = 1/4, finding that x = plus or minus 1/2. We cannot do quite the same thing with the factor p= -2 because the roots would be complex.
If x = 1/2 is a root, then 2x - 1 is a factor. If x = -1/2 is a root, then 2x+1 is a factor.
Let's multiply these two factors, (2x-1) and (2x+1), together, obtaining 4x^2 - 1. Let's divide this 4x^2 - 1 into 4x^4+7x^2-2=0. We get x^2+2 as quotient.
Then, 4x^4+7x^2-2=0 in factored form, is (2x-1)(2x+1)(x^2+2) = 0.