Explanation:
It is given that, the metal with the highest melting temperature is tungsten which melts at around 3400 K, T = 3400 K
We need to find the wavelength of the peak of the black body distribution for this temperature. It can be calculated using Wein's displacement law as :
k is the constant,
or
The wavelength of infrared is from 700 nm to 1 mm. So, the lies in infrared region of the spectrum. Hence, this is the required solution.
Answer: Your code returns a number of 99.123456789 +0.00455679
Ok, you must see where the error starts to affect your number.
In this case, is in the third decimal.
So you will write 99.123 +- 0.004 da da da.
But you must round your results. In the number you can see that after the 3 comes a 4, so the 3 stays as it is.
in the error, after the 4 comes a 5, so it rounds up.
So the final presentation will be 99.123 +- 0.005
you are discarding all the other decimals because the error "domains" them.
We are given with the expression d = ut + 0.5 at^2 and is asked to express the equation in terms of a. First, we transpose ut to the left side, then we multiply to the equation and divide lastly the resulting equation by t^2. The final expression becomes a = 2(d-ut)/t^2.
Average velocity = (x( 2.08 ) - x ( 0 )) / ( 2.08 s - 0 s )
x ( 2.08 ) = 1.42 * 2.08² - 0.05 * 2.08³ =
= 1.42 * 4.3264 - 0.443456 = 6.143484 - 0.443456 ≈ 5.7 m
v = ( 5.7 m - 0 m) / (2.08 s - 0 s ) = 5.7 / 2.08 m/s = 27.4 m/s