1. Frequency: 
The frequency of a light wave is given by:

where
is the speed of light
is the wavelength of the wave
In this problem, we have light with wavelength

Substituting into the equation, we find the frequency:

2. Period: 
The period of a wave is equal to the reciprocal of the frequency:

The frequency of this light wave is
(found in the previous exercise), so the period is:

Answer:
4 m/s^2
Explanation:
The acceleration is defined as: Δv/Δt (the difference of the velocity over a time period in which happens that difference).
Remember that a difference is calculated by subtracting the initial value of a physical quantity from its final value.
In our case:
Δv = Vfinal - Vinitial = 36m/s - 0 m/s = 36m/s
Δt = 9s
a = Δv/Δt = 36m/s / 9s = 4m/s^2
Answer:
1777.92 m/s
Explanation:
R = Radius of asteroid = 545 km
M = Mass of planet
g = Acceleration due to gravity = 2.9 m/s²
G = Gravitational constant = 6.67 × 10⁻¹¹ m³/kgs²
Acceleration due to gravity is given by

The expression of escape velocity is given by

The escape speed is 1777.92 m/s
<span>There is six horizen.
1. O Horizon - The top, organic layer of soil,
2. A Horizon - The layer called topsoil;
3. E Horizon - This layer is beneath the A Horizon and above the
B Horizon. It is made up mostly of sand.
4. B Horizon - Also called the subsoil - this layer is beneath the E
Horizon and above the C Horizon.
5. C Horizon - it's called regolith: the layer beneath the B Horizon
and above the R Horizon.
6 R Horizon - this is last and the unweathered rock layer that is
beneath all the other layers.</span>
Tuberculosis mrsa are some things that are contracted by saliva where spores in the air from an infected person
sneezing as well