Answer:
During a typical school day all forms of eneergy is being utilised and also transfer of energy takes place from one form to another.
Explanation:
Chemical energy- A bunsen burner burning a beaker filled with water.
Heat energy- The water in the beaker absorbing the heat from the burner.
Electrical energy- Running Fans and lights in a classroom by switches.
Solar energy- Solar energy harnessed by solar panels to run the fans and lights by converting it into electrical energy.
Potential energy- A ball being held by a student at a certain height possesses energy due to gravity.
Kinetic energy- The same ball being left by the boy from a certain height produces kinetic energy
Answer:
we can say that with a smaller magnitude , the field will point is in same direction
Explanation:
we have given that
solenoid is filled with a diamagnetic material and with air, magnetic field pointing along its axis in the positive x direction
so in small magnitude, the field will point is in same direction
Answer:
(a) They must have same direction
(b) It is not necessary for them to have same magnitudes
Explanation:
(a)
Momentum is a vector quantity. It is the product of mass (scalar) and velocity (vector). Thus, if the direction of velocity is changed, then as a result the direction of momentum will also change or its magnitude or component in the same direction will change. Hence, for the two objects to have same momentum, the directions of their velocities must also be the same.
(b)
Since, the momentum is product of velocity and mass. It is possible that two bodies of different masses with different velocities might have same momentum, provided the direction of their velocities is same.
For example, take a body of mass 4 kg moving with speed 5 m/s. It will have a momentum of 20 N.s. Now, consider another body of mass 2 kg, moving with speed 10 m/s. It will also have a momentum of 20 N.s.
Thus, it is not necessary for two objects to have same magnitude of velocity to have same momentum.