Answer:
5/2
Step-by-step explanation:
The scale factor for linear measures, such as perimeter, is the square root of the scale factor for areas. The ratio of larger area to smaller is ...
... 75/12 = 25/4
so the ratio of the larger perimeter to the smaller is ...
... √(25/4) = 5/2
Answer: 0.0548
Step-by-step explanation:
Given, A research study investigated differences between male and female students. Based on the study results, we can assume the population mean and standard deviation for the GPA of male students are µ = 3.5 and σ = 0.05.
Let
represents the sample mean GPA for each student.
Then, the probability that the random sample of 100 male students has a mean GPA greater than 3.42:
![P(\overline{X}>3.42)=P(\dfrac{\overline{X}-\mu}{\dfrac{\sigma}{\sqrt{n}}}>\dfrac{3.42-3.5}{\dfrac{0.5}{\sqrt{100}}})\\\\=P(Z>\dfrac{-0.08}{\dfrac{0.5}{10}})\ \ \ [Z=\dfrac{\overline{X}-\mu}{\dfrac{\sigma}{\sqrt{n}}}]\\\\=P(Z>1.6)\\\\=1-P(Z](https://tex.z-dn.net/?f=P%28%5Coverline%7BX%7D%3E3.42%29%3DP%28%5Cdfrac%7B%5Coverline%7BX%7D-%5Cmu%7D%7B%5Cdfrac%7B%5Csigma%7D%7B%5Csqrt%7Bn%7D%7D%7D%3E%5Cdfrac%7B3.42-3.5%7D%7B%5Cdfrac%7B0.5%7D%7B%5Csqrt%7B100%7D%7D%7D%29%5C%5C%5C%5C%3DP%28Z%3E%5Cdfrac%7B-0.08%7D%7B%5Cdfrac%7B0.5%7D%7B10%7D%7D%29%5C%20%5C%20%5C%20%5BZ%3D%5Cdfrac%7B%5Coverline%7BX%7D-%5Cmu%7D%7B%5Cdfrac%7B%5Csigma%7D%7B%5Csqrt%7Bn%7D%7D%7D%5D%5C%5C%5C%5C%3DP%28Z%3E1.6%29%5C%5C%5C%5C%3D1-P%28Z%3C1.6%29%5C%5C%5C%5C%3D1-0.9452%3D0.0548)
hence, the required probability is 0.0548.
Answer: The second option and the third option are true.
Step-by-step explanation:
The formula of the line in slope-intercept form is:

Where <em>m </em>is the slope and <em>b </em>is the y-intercept.
By definition, the y-intercept in a direct variation is 0.
Therefore, substituting
and
into the equation, you obtain:

Then, the equation is:

As this is a line, it is a linear function.
Therefore, the second option and the third option are true.
Answer:
La respuesta es falso.
Step-by-step explanation:
La respuesta es falso.
Cuando se suman fraccciones con igual denominador, se suman los numeradores (numerador con numerador) y se deja el mismo denominador (el cual es común en ambos). Por ejemplo, la suma de 1/5 + 3/5 da como resultado:

En el caso de fracciones con diferentes denominadores, tampoco se suma numerador con numerador y denominador con denominador. En ese caso se debe encontrar el mínimo común múltiplo.
Por lo tanto, la respuesta es falso.
Espero que te sea de utilidad!