The two triangles with the given perimeter is attached .
Perimeter is the sum of all sides.
For the first triangle , sies are 2a,2a and b.
So the perimeter is

For the second triangle, sides are a,a, and 2a+b. Therefore perimeter is

So for both triangles, perimeter is

The answer to your question is 260
Given :
- A = {x: 2x² + 3x - 2 = 0 }
- B = {x : x² + 3x - 4 = 0 }
To find :
Solution :-
<u>The </u><u>first </u><u>set </u><u>is </u><u>,</u>
- A ={x : 2x² + 3x - 2 = 0}
<u>Solving</u><u> </u><u>the </u><u>Quadratic</u><u> equation</u><u> </u><u>,</u>
- 2x² + 3x - 2 = 0
- 2x² + 4x - x - 2 = 0
- 2x( x + 2) -1( x + 2 ) = 0
- (2x -1) ( x + 2) = 0
- x = 0.5 , -2
<u>Hence</u><u> </u><u>,</u>
<u>The </u><u>second</u><u> </u><u>set </u><u>is </u><u>,</u>
- B ={ x :x² + 3x - 4 = 0 }
<u>Solving</u><u> the</u><u> Quadratic</u><u> equation</u><u> </u><u>,</u>
- x² + 3x - 4 = 0
- x² + 4x - x - 4 = 0
- x( x + 4)-1 ( x +4) = 0
- (x + 4) ( x -1) = 0
- x = 1 , -4
<u>Hence</u><u> </u><u>,</u>
<u>Now </u><u>,</u>
- A U B = { 0.5 , 1 , 4 , -2}
- A Π B = {∅ }
Since AΠ B is a null set , hence ,
The square root of 9 is 3
Answer:
my brother said it is 5 and 10... but i do not know if it is